EXPLORING POLYMORPHISM AND EFFECTS OF THE IGFIR GENE ON PRODUCTIVE LIFE IN BARKI EWES

Authors

  • A. H. M. IBRAHIM Department of Animal Breeding, Desert Research Center, 1 Mathaf AlMatariya St., Cairo, Egypt
  • S. M. ALSHEIK Department of Animal Breeding, Desert Research Center, 1 Mathaf AlMatariya St., Cairo, Egypt

Abstract

The insulin like growth factor I receptor (IGFIR) gene is known to be involved in the control of the insulin like growth factor I (IGFI) and the insulin like growth factor II (IGFII) through mediating their strong actions that affecting many biological processes (e.g. energy expenditure, metabolism, oxidative stress resistance, cancer suppression, follicle development, ovulation rate,…etc.). These processes proved significant effects on age and reproductive traits of many lived organisms. The allelic and genotypic polymorphisms of the IGFIR gene were identified in 95 Barki ewes using the polymerase chain reaction-single strand conformational polymorphism (PCR-SSCP) tool. Also, the effect of variation in IGFIR gene on age and reproductive traits of ewes was measured using three sets of general linear mixed effect models. The obtained results revealed two allelic, A (0.19) and B (0.81) and three genotypes, AA (0.05), AB (0.28) and BB (0.67) polymorphisms. Least square mean analysis revealed a significant statistical effect for the IGFIR genotype on age (P ˂ 0.01), total number of lambs born per ewe (TNLB; P ˂ 0.05) and total number of lambs weaned per ewe (TNLW; P ˂ 0.05). The presence of allele A and absence of allele B was significantly associated with longer age (0.89 year; P ˂ 0.01), higher lambing number (0.70; P ˂ 0.05), increased TNLB (0.86; P ˂ 0.05) and increased TNLW (0.65; P ˂ 0.05). Also, the number of allele A was positively associated with age, TNLB and TNLW. Finding the association of variation in IGFIR gene with age and reproductive traits in Barki sheep may be useful for the prolonged productive life.

References

Albani, D., S. Mazzuco, L. Polito, S. Batelli, G. Biella, F. Ongaro, D. R. Gustafson, P. Antuono, G. Gajo, E. Durante, L. Caberlotto, A. Zanardo, M. Siculi, M. Gallucci and G. Forloni (2011). Insulin-like growth factor 1 receptor polymorphism rs2229765 and circulating interleukin-6 level affect male longevity in a population-based prospective study (Treviso Longeva--TRELONG). Aging Male, 14: 257-264.

Akis, I., K. Oztabak, I. Gonulalp and A. C. Mengi (2010). IGF-1 and IGF-1R gene polymorphism in East Anatolian Red and South Anatolian Red cattle breeds. Genetika, 46: 497-501.

Barbieri, M., V. Boccardi, A. Esposito, M. Papa, F. Vestini, M. R. Rizzo and G. Paolisso (2012). A/ASP/VAL allele combination of IGF1R, IRS2, and UCP2 genes is associated with better metabolic profile, preserved energy expenditure parameters, and low mortality rate in longevity. Age, 34: 235-245.

Baumgarten, S. C., S. M. Convissar, M. A. Fierro, N. J. Winston, B. Scoccia and C. Stocco (2014). IGF1R signaling is necessary for FSH-induced activation of AKT and differentiation of human Cumulus granulosa cells. The Journal of Clinical, Endocrinology and Metabolism, 99: 2995-3004.

Braekman, B. P. and J. R. Vanfleteren (2007). Genetic control of longevity in C. elegans. Experimental Gerontology, 42: 90-98.

Burkhardt, S., J. Gesing, T. M. Kapellen, P. Kovacs, J. Kratzsch, M. Schlicke, H. Stobbe, A. Tönjes, J. Klammt and R. Pfäffle (2014). Novel heterozygous IGF1R mutation in two brothers with developing impaired glucose tolerance. Journal of Pediatric Endocrinology and Metabolism. ISSN (Online) 2191-0251.

Byun, S. O., H. Zhou and J. G. Hickford (2008). Polymorphism of the ovine insulin-like growth factor 1 receptor (IGF1R) gene. Molecular and Cellular Probes, 22: 131-132.

Byun, S. O., R. H. Forrest, C. M. Frampton, H. Zhou and J. G. H. Hickford (2012). An association between lifespan and variation in insulin-like growth factor I receptor in sheep. Journal of Animal Science, 90: 2484-2487.

Cargnello M. and P. P. Roux (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews, 75: 50-83.

Cornu, M., H. Modi, D. Kawamori, R. N. Kulkarni, M. Joffraud and B. Thorens (2010). Glucagon-like peptide-1 increases betacell glucose competence and proliferation by translational induction of insulin-like growth factor-1 receptor expression. The Journal of Biological Chemistry, 285: 10538-10545.

Courtney, K. D., R. B. Corcoran and J. A. Engelman (2010). The PI3K pathway as drug target in human cancer. Journal of Clinical Oncology, 28:1075-1083.

Daftary, S. S. and A. C. Gore (2005). IGF-1 in the brain as a regulator of reproductive neuroendocrine function. Experimental Biology and Medicine, 230: 292-306.

Epaud, R., F. Aubey, J. Xu, Z. Chaker, M. Clemessy, A. Dautin, K. Ahamed, M. Bonora, N. Hoyeau, J. F. Fléjou, A. Mailleux, A. Clement, A. Henrion-Caude and M. Holzenberger (2012). Knockout of insulin-like growth factor-1 recep-tor impairs distal lung morphogenesis. PLoS One. 7:e48071. doi: 10.1371/journal. pone.0048071

Etgen, A. M. and M. Acosta-Martinez (2003). Participation of growth factor signal transduction pathways in estradiol facilitation of female reproductive behavior. Endocrinology, 144: 3828-3835.

FAO (2008). Food and Agricultural Organization of the United Nations (FAO). Sheep reproductive performance.

Gerisch, B., C. Weitzel, C. Kober-Eisermann, V. Rottiers and A. Antebi (2001). A hormonal signaling pathway influencing C. elegans metabolism, reproductive development and lifespan. Developmental Cell, 1: 841-851.

Holzenberger, M., J. Dupont, B. Ducos, P. Leneuve, A. Geloen, P. C. Even, P. Cervera and Y. Le Bouc (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature, 421: 182-187.

Janku, F., H. J. Huang, L. Angelo and R. Kurzrock (2013). A kinase-independent biological activity for insulin growth factor-1 receptor (IGF-1R): implications for inhibition of the IGF-1R signal. Oncotarget, 4: 463-473.

Ji, Q. S., M. J. Mulvihil, M. Rosenfeld-Franklin, A. Cooke, L. Feng, G. Mak, M. O'Connor, Y. Yao, C. Pirritt, E. Buck, A. Eyzaguirre, L. D. Arnold, N. W. Gibson and J. A. Pachter (2007). A novel, potent, and selective insulin-like growth factor-I receptor kinase inhibitor blocks insulin-like growth factor-I receptor signaling in vitro and inhibits insulin-like growth factor-I receptor dependent tumor growth in vivo. Molecular Cancer Therapeutics, 6: 2158-2167.

Kaletsky, R. and C. T. Murphy (2010). The role of insulin/IGF-like signaling in C. elegans longevity and aging. Disease Models and Mechanisms, 3: 415-419

Ktbl (2009). Fleischschafhaltung- Produktionsverfahren planen und kalkulieren. (2009). Auflage, Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt.

Liang, H., E. J. Masoro, J. F. Nelson, R. Strong, C. A. McMahan and A. Richardson (2003). Genetic mouse models of extended lifespan. Experimental Gerontology, 38: 1353-1364.

Martinelli, C. E., R. J. Custódio and M. H. Aguiar-Oliveira (2008). Fisiologia do eixo GHsistema IGF. Arquivos Brasileiros de Endocrinologia and Metabologia, 52: 717-725.

Matos, C. A. P., D. L. Thomas, D. Gianola, M. Perez-Enciso and L. D. Young (1997). Genetic analysis of discrete reproductive traits in sheep using linear and nonlinear models. II. Goodness of fit and predictive ability. Journal of Animal Science, 75: 88-94.

Muñoz-Gutiérrez, M., D. Blache, G. B. Martin and R. J. Scaramuzzi (2004). Ovarian follicular expression of mRNA encoding the type I IGF receptor and IGF-binding protein-2 in sheep following five days of nutritional supplementation with glucose, glucosamine or lupins. Reproduction, 128: 747-756.

Paaby, A. B. and P. S. Schmidt (2009). Dissecting the genetics of longevity in Drosophila melanogaster. Fly, 3:1.

Pawlikowski, B., L. Lee, J. Zuo and R. H. Kramer (2009). Analysis of human muscle stem cells reveals a differentiation-resistant progenitor cell population expressing Pax7 capable of self-renewal. Developmental Dynamics, 238: 138-149.

Pearson, G., F. Robinson, T. Gibson, B. E. Xu, M. Karandikar, K. Berman and M. H. Cobb (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22: 153.

Quesada, A. and A. M. Etgen (2002). Functional interactions between estrogen and insulin-like growth factor-i in the regulation of α1ß-adrenoceptors and female reproductive function. The Journal of Neuroscience, 22: 2401-2408.

Reinmuth, N., F. Fan, W. Liu, A. A. Parikh, O. Stoeltzing, Y. D. Jung, C. D. Bucana, R. Radinsky, G. E. Gallick and L. E. Ellis (2002). Impact of Insulin-Like Growth Factor Receptor-I Function on Angiogenesis, Growth and Metastasis of Colon Cancer. Laboratory Investigation, 82: 1377-1389.

Safari, A. and N. M. Fogarty (2003). Genetic parameters for sheep production traits: estimates from the literature. NSW Agriculture, Orange, NSW, Australia.

Sanguinetti, C. J., E. Dias Neto and A. J. G. Simpson (1994). Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques, 17: 915-919.

Schoenian, S. G. and P. J. Burfening (1990). Ovulation rate, lambing rate, litter size and embryo survival of Rambouillet sheep selected for high and low reproductive rate. Journal of Animal Science, 68: 2263-2270.

Singh, P., J. M. Alex and F. Bast (2014). Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Medical Oncology, 31: 805. Stellflug, J. N., P. G. Hatfield, M. C. Wulster-Radcliffe and J. W. Walker (2001). Reproductive performance of ewe lambs from ewes from different selection practices with or without induced estrus. Animal Reproduction Science, 66: 185-193.

Suh, Y., G. Atzmon, M. O. Cho, D. Hwang, B. Liu, D. J. Leahy, N. Barzilai and P. Cohen (2008). Functionally significant insulin like growth factor 1 receptor mutations in centenarians. The Proceedings of the National Academy of Sciences, 105: 3438-3442.

Szewczuk, M., S. Zych, J. Wójcik and E. Czerniawska-Piątkowska (2013). Association of two SNPs in the coding region of the insulin-like growth factor 1 receptor (IGF1R) gene with growth-related traits in Angus cattle. Journal of Applied Genetics, 54: 305-308.

Tatar, M., A. Bartke and A. Antebi (2003). The endocrine regulation of aging by insulin-like signals. Science, 299: 1346-1351.

Terman, A. (2011). The IGF1R gene: A new marker for reproductive performance traits in sows? Acta Agriculturae Scandinavica, Section A: Animal Science, 61: 67-71.

Thakur, S., N. Garg and M. L. Adamo (2013). Deficiency of Insulin-Like Growth Factor-1 Receptor Confers Resistance to Oxidative Stress in C2C12 Myoblasts. PLoS ONE 8: e63838. doi:10.1371/journal.pone. 0063838.

Walker, G. and M. J. Young (2009). SIL Technical Note - Advanced draft: Ewe longevity (or stayability). Sheep Improvement Limited, New Zealand. Wang, L. M., H. L. Feng, Y. Ma, M. Cang, H. J. Li, Zh Yan, P. Zhou, J. X. Wen, S. Bou and D. J. Liu (2009). Expression of IGF receptors and its ligands in bovine oocytes and preimplantation embryReproduction Science, 114: 99-108.

Wang, L. M., J. X. Wen, J. L. Yuan and D. J. Liu (2012). Knockdown of IGF-IR by siRNA injection during bovine preimplantation embryonic development. Cytotechnology, 64: 165-172.

Wang, Y., J. Hailey, D. Williams, Y. Wang, P. Lipari, M. Malkowski, X. Wang, L. Xie, G. Li, D. Saha, S. Cannon-Carlson, R. Greenberg, R. A. Ramos, R. Shields, L. Presta, P. Brams, W. R. Bishop and J. A. Pachter (2005). Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti–IGF-IR antibody. Molecular Cancer Therapeutics, 4: 1214.

Yang, W. C., L. G. Yang, H. Riaz, K. Q. Tang, L. Chen and S. J. Li (2013). Effects in cattle of genetic variation within the IGF1R gene on the superovulation performance and pregnancy rates after embryo transfer. Animal Reproduction Science, 143: 24-29.

Downloads

Published

2016-01-12

Issue

Section

Articles