GENETIC RELATIONSHIPS AMONG SOME MAIZE (Zea mays L.) GENOTYPES ON THE BASIS OF GENE ACTION AND RAPD MARKERS UNDER DROUGHT STRESS

Authors

  • A. G. A. KHALED Department of Genetics, Faculty of Agriculture, Sohag University, Sohag 82786, Egypt
  • G. A. R. EL-SHERBENY Department of Genetics, Faculty of Agriculture, Sohag University, Sohag 82786, Egypt
  • H. M. A. ELSAYED Department of Genetics, Faculty of Agriculture, Sohag University, Sohag 82786, Egypt

Abstract

The range of mean performance of studied characters was quite wide among all genotypes under normal and drought conditions. Highly significant differences existed among nine parental maize lines and their 20 F1's, revealing a large amount of variability among them under both environments.  The  significant  of  mean square of parents vs. crosses observed, indicating the importance of heterotic values and non additive genetic variance in  the  inheritance  of  these  traits.  Some lines  and  their  F1's  crosses  showed drought susceptibility index (DSI) values less than one revealing relative drought resistance. The results showed that the magnitudes of non-additive genetic variance (σ2D) were larger than those of additive ones (σ2A), indicating that non additive gene  action was  pronounced in  the inheritance of traits. Therefore, these promising crosses could be used and utilized in maize breeding program to improve these traits under different conditions. This finding could be emphasized by the estimate values of narrow sense heritability. A total of 48 bands were polymorphic across the entire samples with an average of 76.14%. The phylogenetic tree based on RAPD markers showed that the  genotypes  were  separated  into  two main groups, in which line A3 was separated from the other lines in the first group with a branched-off 77% level of similarity. The other lines were clustered together in  the  second  group,  which  sub-divided into four sub-groups with a breached-off 82% genetic similarity. The phylogenetic tree based on morphological characters showed that the similarity percent ranged from 70.1% to 96.9%.

References

Abd El-Maksoud, M. M., G. A. R. El-Sherbeny and A. H. Abd El-Hadi (2003). Evaluation of some exotic yellow maize inbred lines for combining ability using local openpollinated testers. J. of Agric. Sci., Mansoura Univ., 28: 7273-7280.

Abdel-Sabour, G. A. K., H. A. Obiadalla-Ali and K. A. Abdel-Rehim (2010). Genetic and chemical analyses of six cowpea and two phaseolus bean species differing in resistance to weevil pest. J. Crop Sci. Biotech., 13: 53-60.

Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotech. Adv., 28: 169-183.

Berveley, J. P., N. H. John, T. J. Michael and V. F. Brian (1997). Contrasting genetic diversity relationship are revealed in rice Oriza sativa (L.) using different marker types. Mol. Breed., 3: 115-125.

Beyene, Y., A. Botha and A. M. Alexander (2005). A comparative study of molecular and morphological methods of describing genetic relationships in traditional Ethiopian highland maize. African J. of Bio-technology, 4: 586-595.

Bolaños, J. and G. O. Edmeades (1996). The importance of the anthesis-siliking interval in breeding for drought tolerance in maize. Field Crops Research, 48: 65-80.

Bruce, W. B., G. O. Edmeades and T. C. Barker (2002). Molecular and physiological approaches to maize improvement for drought tolerance. J. Exp. Bot., 53: 13-25.

Carvalho, V. P., C. F. Ruas, J. M. Ferreira, R. M. P. Moreira and P. M. Ruas (2004). Genetic diversity among maize (Zea mays L.) landraces assessed by RAPD markers. Genetics and Molecular Biology, 27: 228-236.

Farshadfar, E. and J. Sutka (2002). Screening drought tolerance criteria in maize. Acta Agron. Hungarica, 50: 411-416.

Fischer R. A. and R. Maurer (1978). Drought resistance in spring wheat cultivars. I-Grain yield responses. Aust. J. Agric. Res., 29: 897-912.

Fu, F. L., Z. L. Feng, S. B. Gao, S. F. Zhou and W. C. Li (2008). Evaluation and quantitative inheritance of several drought-relative traits in maize. Agricultural Sciences in China, 7: 280-290.

Grant, R. F., B. S. Jackson, J. R. Kiniry and G. F. Arkin (1989). Water def-icit timing effects on yield components in maize. Agron. J., 81: 61-65.

Heun, M. and T. Helentjaris (1993). Inheritance of RAPD in F1 hybrids of corn. Theor. Appl. Genet., 85: 961-968.

Imtiaz, H. (2009). Genetics of drought tolerance in maize (Zea mays L.). Ph. D. Thesis, Department of Plant Breeding and Genetic, University of Agriculture, Faisalabad, Pakistan.

Kaufman, L. and P. J. Rousseeuw (1990). Finding groups in data. John Wiley & Sons, New York.

Khaled, A. M. I. (2008). Combining ability and types of gene action in yellow maize (Zea mays L.). PhD. Thesis, Agron. Dept., Faculty of Agric., Assiut Univ., Egypt.

Kongkiatngam, P., M. J. Waterway, B. E. Coulman and M. G. Fortin (1996). Genetic variation among cultivars of red clover (Trifolium pratence L.) detected by RAPD markers amplified from bulk genomic DNA. Euphytica, 89: 355-361.

Ilarslan, R., Z. Kaya, I. Kandemir and P. K. Bretting (2002). Genetic variability among Turkish pop, flint and dent maize (Zea mays L. spp. mays) varieties: Enzyme polymorphism. Euphytica, 122: 171-179.

Lanza, L. L. B., C. L. Souza, L. M. M. Ottoboni, M. L. C. Vieira, C. L. Souza and P. De-Souza (1997). Genetic distance of inbred lines and prediction of maize single cross performance using RAPD markers. Theor. Appl. Genet., 94: 1023-1030.

Louette, D. and M. Smale (2000). Farmer’s seed selection practices and traditional maize varieties in Cuzalapa, Mexico, Euphytica, 113: 25-41.

Maciej, T. G., W. Piotr, J. K. Franciszek, M. Izabela, H. Katarzyna, S. Piotr and G. Tomasz (2012). The relations between drought susceptibility index based on grain yield (DSIGY) and key physiological seedling traits in maize and triticale genotypes. Acta Physiologiae Plantarum, 34: 1757-1764.

Mahdi, Z., C. Rajab, M. H. Eslam, R. B. Mohammad and O. Kourosh (2011). Gene action of some agronomic traits in corn (Zea mays L.) using diallel cross analysis. African Journal of Agricultural Research, 6: 693-703.

Mather, K. and J. L. Jinks (1971). Biometrical Genetics. Chapman and Hall, London.

Messmer, M. M., A. E. Melchinger, R. G. Herrmann and J. Boppenmaier (1993). Relationships among early European maize inbreds: II. Comparison of pedigree and RFLP data. Crop Sci., 46: 944-950.

Moeller, D. A. and B. A. Schall (1999). Genetic relationships among Native American maize accessions of the Great Plains assessed by RAPDs. Theor. Appl. Genet., 99: 1061-1067.

Nagaoka, T. and Y. Ogihara (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet., 94: 597-602.

Nei, M. and W. H. Li (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci., USA, 76: 5269-73.

Okumus, A. (2007). Genetic variation and relationship between Turkish flint maize landraces by RAPD markers. American Journal of Agricultural and Biological Science, 2: 49-53.

Parentoni, S. N., J. V. Magalhães, C. A. P. Pacheco, M. X. Santos, T. Abadie, E. E. G. Gama, P. E. O. Guimarães, W. F. Meirelles, M. A. Lopes, M. J. V. Vasconcelos and E. Paiva (2001). Heterotic groups based on yield-specific combining ability data and phylogenetic relationship determined by RAPD markers for 28 tropical maize open pollinated varieties. Euphytica, 121: 197-208.

Pejic, L., M. P. Ajmone, M. Morgante, V. Kozumplik, P. Castiglion, G. Taramino and M. Motto (1998). Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor. Appl. Genet., 97: 1248-1255.

Poresbski, S. L., G. Bailey and R. B. Baum (1997). Modification of CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 12: 8-15.

Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey and A. Rafalski (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed., 2: 225-238.

Ribaut, J. M., J. Betran, P. Monneveux and T. Setter (2009). Drought tolerance in maize. In: Bennetzen, J. L. Hake S. C. (eds.) Handbook of Maize: Its Biology, Springer, New York, 311-314.

Shafey, S. A., H. E. Yassien, I. E. M. El-Beially and O. A. M. Gad-Alla (2002). Estimates of combining ability and heterosis effects for growth earliness and yield in maize (Zea mays L.). J. of Agric. Sci., Mansoura Univ., 27: 1023-1033.

Shirinzdeh, A., R. Zaghami, A. V. Azghandi, M. R. Shiri and M. Mirabdulbaghi (2010). Evaluation of drought tolerance in mid and late mature corn hybrids using tolerance indices. Asian J. of Plant Sciences, 9: 67-73.

Stanislaw, G. (2001). Genotypic variation between maize (Zea mays L.) single cross hybrids in response to drought stress. Acta Physiologiae Plantarum, 23: 443-456.

Tanttawi, D. M., A. G. A. Khaled and M. H. Hosseny (2007). Genetic studies for some agronomic characters in faba bean (Vicia faba L.). Assiut Journal of Agricultural Sciences, 38: 117-137.

Thormann, C. E., M. E. Ferreira, L. E. A. Camargo, J. G. Tivang and T. C. Osborn (1994). Comparison of RFLP and RAPD markers for estimating genetic relationships within and among cruciferous pecies. Theor. Appl. Genet., 88: 973-980.

Valdemar, P. C., F. R. Claudete, M. F. Josué, M. P. M. Rosângela and M. R. Paulo (2004). Genetic diversity among maize (Zea mays L.) landraces assessed by RAPD Markers. Genetics and Molecular Biology, 27: 228-236.

Williams, J. G. K., A. R. Kubelik, J. Livak, J. A. Rafalski and S. V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.

Yu, K. F. and K. P. Pauls (1993). Rapid estimation of genetic relatedness among heterogeneous populations of alfalfa by random amplification of bulked DNA samples. Theor. Appl. Genet., 86: 788-794.

Zeven, A. C. (1996). Results of activities to maintain landraces and other material in some European countries in situ before 1945 and what we learn from them. Genet. Res. and Crop. Evol., 43: 337-341.

Downloads

Published

2016-01-12

Issue

Section

Articles