GENETIC TRANSFORMATION OF COMMON BEANS (Phaseolus vulgaris L.) CALLI BY BIOLISTIC GUN AND VIA Agrobacterium tumefaciens

Authors

  • E. A. EISSA Dept. Genetics, Fac. Agric., Fayoum Univ., Fayoum, Egypt

Abstract

Common bean is one of the most recalcitrant species for in vitro manipulation and transformation. In this study efficient genetic transformation methods were developed and performed in commercialized bean varieties calli by utilized microparticle bombardment (direct biolistic gun) and indirect A. tumefaciens-based technique. Hypocotyl segments cultured on Gamborgs medium supplemented with 1 mg l-l kinetin and 2 mg l-l 2,4-dichlorophenoxy acetic acid proved the best for callus induction and maintenance. Co-transformed calli were double selected on selective medium using 150 mg l-l kanamycin and 0.8 mol l-l mannitol. Transient genes expressions were obtained in calli cells and the results showed that the cells shot by biolistic DNA delivery method can be transformed to get kanamycin resistant and mannitol tolerant. The presence and integration of the neomycin phosphotransferase II (npt II) and osmosis protector mannitol-1-phosphate dehydrogenase (mtlD) genes into P. vulgaris L. genome were confirmed and verified by double selection tests. Transgenic calli were selected after co-cultivated with Agrobacterium method on selective medium containing 5 mg l-l phosphinotricin (PPT). Transient genes expressions were obtained in the calli and the results showed that the common beans calli co-cultivated with Agrobacterium can be transformed to get phosphinotricin resistant and β-glucuronidase reporter positive tissues. The presence and integration of the phosphinotricin acetyl transferase and β-glucuronidase genes into P. vulgaris L. genome were confirmed and verified by marker selection and histochemical assay tests. These results suggest an efficient biolistic gun, and Agrobacterium-mediated transformation methods for stable integration of economically important genes into common beans calli, and that these transformations systems could be useful for future studies on transferring economically important genes into common bean plants.

References

Allavena, A. (1985). Infection of Phaseolus vulgaris with strains of Agrobacterium tumefaciens and A. rhizogenes. Annual Report of the Bean Improvement Cooperative, 28: 90-91.

Aragão, F. J. L. and J. C. Faria (2009). “First transgenic geminivirus- resistant plant in the field”. Nature Biotechnology, 27: 1086-1088.

Aragão, F. J. L., L. M. G. Barros, A. C. M. Brasileiro, S. G. Ribeiro, F. D. Smith, J. C. Sanford, J. C. Faria and E. L. Rech (1996). Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) cotransformed via particle bombardment. Theor. Appl. Genet., 93: 142-150.

Becker, J., T. Vogel, J. Iqbal and W. Nagl (1994). Agrobacterium-mediated transformation of Phaseolus vulgaris. Adaptation of some conditions. Annual Report of the Bean Improvement Cooperative, 37: 127-128.

Chai, B., S. B. Maqbool, R. K. Hajela, D. Green, J. M. Vargas, D. Warkentin, R. Sabzikar and M. B. Sticklen (2002). Cloning of a chitinase like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Science, 163: 183-193.

Christou, P., D. E. Mccabe and W. F. Swain (1988). Stable transformation of soybean callus by DNA coated gold particles. Plant Physiology, 87: 671-674.

De Block, M., J. Botterman, M. Vandewiele, J. Dockx, C. Thoen, V. Gossele, N. Rao Movva, C. Thompson, M. Van Montagu and J. Leemans (1987). Engineering herbicide resistance in plants by expression of a detoxifying enzyme. The EMBO Journal, 6: 2513-2518.

De Kathen, A. and H. J. Jacobsen (1990). Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and cointegrate vectors. Plant Cell Reports, 9: 276-279.

Dillen, W., J. De Clercq, A. Goossens, M. Van Montagu and G. Angenon (1997). Agrobacterium-mediated transformation of Phaseolus acutifolius A. gray. Theor. Appl. Genet., 94: 151-158.

Eapen, S., F. Köhler, M. Geremann and O. Schieder (1987). Cultivar dependence of transformation rates in moth bean after co-cultivation of protoplasts with Agrobacterium tumefaciens. Theor. Appl. Genet., 75: 207-210.

Eissa, A. E., G. Bisztray and I. Velich (1999). Regeneration in Phaseolus vulgaris L.: High frequency induction of shoot formation in intact seedlings and seedling node explants. Publications of the University of Horticulture and Food Industry, LVIII: 113-118.

Eissa, A. E., G. Bisztray and I. Velich (2001). Transformation of bean callus by using high velocity microprojectiles. Acta Horticulturae, 560: 129-132.

Franklin, C. I., T. N. Trieu, B. G. Cassidy, R. A. Dixon and R. S. Nelson (1993). Genetic transformation of green bean callus via Agrobacterium-mediated DNA transfer. Plant Cell Reports, 12: 74-79.

Gamborg, O. L., R. A. Miller and K. Ojima (1968). Nutrient requirements of suspension cultures of soybean root cells. Journal of Experimental Research, 50: 151-158.

Garcia, J. A., J. Hille and R. Goldbach (1986). Transformation of cowpea Vigna unguiculata cells with an antibiotic resistance gene using a Ti plasmid derived vector. Plant Science, 44: 37-46.

Gatica Arias, A. M., J. M. Valverde, P. R. Fonseca and M. V. Melara (2010). In vitro plant regeneration system for common bean (Phaseolus vulgaris): effect of N6-benzylaminopurine and adenine sulphate. Electronic Journal of Biotechnology, 13: 1-8.

Genga, A., A. Ceriotti, R. Bollini and A. Allavena (1990). Preleminary approaches for genetic transformation of bean. Annual Report of the Bean Improvement Cooperative, 33: 75.

Gémesné Juhász, A., L. Simon-Sarkadi, I. Velich and P. Varrό (1995). The effect of non ionic osmotic stress on bean callus cultures. International Journal of Horticultural Science, 27: 7-14.

Giovinazzo, G., V. Greco and R. Bollini (1993). Optimization of cell suspension culture, protoplasts isolation, and transient transformation of Phaseolus vulgaris L. Annual Report of the Bean Improvement Cooperative, 36: 14.

Hamdy, M. A. A. and K. Hattori (2006). In vitro micropropagation of (Vicia faba L.) cultivars ʻWaza Soramame and Cair by nodal explants proliferation and somatic embryogenesis. Biotechnology, 5: 32-37.

Hanafy, M. S. (2002). Development of an efficient transformation system to field bean (Vicia faba), manipulation of the sulphur-rich protein content via genetic engineering. PhD. Dissertation, p. 46-51. (Von dem Fachbereich Biologie Der Universität Hannover zur Erlangung des Grades eines).

Harini, S. S. and N. Sathyanarayana (2009). Somatic embryogenesis in Mucuna pruriens. African Journal of Biotechnology, 8: 6175-6180.

Hassan, F., M. Imdadul Hoque, H. Kiesecker and H. J. Jacobsen (2007). Transient GUS expression in decapitated lentil embryos. Plant Tissue Culture and Biotechnology, 17: 97-102.

Hildebrandt, D. F., G. C. Phillips and G. B. Collins (1986). Soybean (Glycine max L. Merr.). In: Biotechnology in Agriculture and Forestry, 2 (Crops I): p. 283-308, Bajaj Y. P. S., ed. Springer, Berlin Heidelberg New York.

Hinchee, M. A. W., D. V. Connor-Ward, C. A. Newell, R. E. Mcdonnell, S. J. Sato, C. S. M. Gasser, D. A. Fischhoff, D. B. Re, R. T. Fraley and R. B. Horsch (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology, 6: 915-920.

Ignacimuthu, S. and S. Prakash (2006). Agrobacterium-mediated transformati n f chickpea with α amylase inhibitor gene for insect resistance. Journal of Biosciences, 31: 1-7.

Iser, M., S. Fettig, F. Scheyhing, K. Viertel and D. Hess (1999). Genotype dependent stable genetic transformation in German spring wheat varieties selected for high regeneration potential. Journal of Plant Physiology, 154: 509-516.

Jefferson, R. A. (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5: 387-405.

Jenes, B., P. A. L. Bittencourt, Á. Csányi, J. Pauk, I. Nagy, O. Toldi and E. Balázs (1996). The GENEBOOSTER a new microparticle bombardment device for genetic transformation of plants. Plant Tissue Culture and Biotechnology, 2: 42-51.

Jenes, B., O. Toldi, P. A. L. Bittencourt, I. Nagy, Á. Csányi and E. Balázs (1997). The GENEBOOSTERTM designed and developed by the Agricultural Biotechnology Center, Gödöllő. Hungarian Agricultural Research, 3: 14-17.

Kelly, J. D. (2010). The story of bean breeding, white paper prepared for bean CAP & PBG works on the topic of dry bean production and breeding research in the USA. Michigan State University, June 2010: 1-29.

Köhler F., C. Golz, S. Eapen, H. Kohn and O. Schieder (1987). Stable transformation of moth bean Vigna aconitifolia via direct gene transfer. Plant Cell Reports, 6: 313-317.

Kwapata, K., T. Nguyen and M. Sticklen (2012). Genetic transformation of common bean (Phaseolus vulgaris L.) with the Gus color marker, the Bar herbicide resistance, and the barley (Hordeum vulgare) HVA1 drought tolerance genes. International Journal of Agronomy, 2012: 1-8.

Lewis, M. E. and F. A. Bliss (1994). Tumor formation and β-glucuronidase expression in Phaseolus vulgaris inoculated with Agrobacterium tumefaciens. Journal of the American Society for Horticultural Science, 119: 361-366.

Liu, Z., B. J. Park, A. Kanno and T. Kameya (2005). The novel use of a combination of sonication and vacuum infiltration in Agrobacterium mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Molecular Breeding, 16: 189-197.

Mariotti, D., G. S. Fontana and L. Santini (1989). Genetic transformation of grain legumes: Phaseolus vulgaris L. and P. coccineus L. Journal of Genetics and Plant Breeding, 43: 77-82.

McClean, P., J. Simental, P. Chee and J. L. Slightom (1988). Transformation of dry bean tissues via Agrobacterium vectors. Annual Report of the Bean Improvement Cooperative, 31: 47-48.

McClean, P., P. Chee, B. Held, J. Simental, R. F. Drong and J. Slightom (1991). Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection: Transformation of cotyledonary and hypocotyl tissues. Plant Cell, Tissue and Organ Culture, 24: 131-138.

Mihály, R., E. Kόtai, O. Kiss and J. Pauk (2002). In vitro selection of transformed foreign gene (bar) in wheat anther culture. Acta Biologica Szegediensis, 46: 9-10.

Mohamed, M. F., D. P. Coyne and P. E. Read (1993). Enhanced differentiation of somatic embryoids in callus cultures of common bean. Annual Report of the Bean Improvement Cooperative, 36: 16-17.

Mohamed, S. V., C. S. Wang, M. Thiruvengadam and N. Jayabalan (2004). In vitro plant regeneration via somatic embryogenesis through cell suspension cultures of horsegram [Macrotylom uniflorum (Lam.) Verdc.]. In Vitro Cellular and Developmental Biology Plant, 40: 284-289.

Mok, D. W. S., M. C. Mok, A. Rabakoarihanta and C. T. Shii (1986). Phaseolus: Wide hybridization through embryo culture. In: Biotechnology in Agriculture and Forestry, 2 (Crops I): p. 309-318, Bajaj Y. P. S., ed. Springer, Berlin Heidelberg New York.

Molnár, Z., L. Potyondi and O. Toldi (2002). Attempts to produce transgenic Beta vulgaris L. plants via combined gene transfer methods. Acta Biologica Szegediensis, 46: 43-44.

Mongomaké, K., K. T. Hilaire, K. Daouda, Z. Michel, K. Y. Justin and S. J. Ochatt (2009). In vitro plantlets regeneration in Bambara groundnut [Vigna subterranea (L.) Verdc. (Fabaceae)] through direct shoot bud differentiation on hypocotyl and epicotyl cuttings. African Journal of Biotechnology, 8: 1466-1473.

Morginski, L. A. and K. K. Kartha (1985). Tissue culture of legumes for crop improvement. Plant Breeding Reviews, 2: 215-264.

Murashige, T. and F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.

Naz, S., A. Ali, F. A. Siddique and J. Iqbal (2007). Multiple shoot formation from different explants of chick pea (Cicer arietinum L.). Pakistan Journal of Botechnology, 39: 2067-2073.

Pauk, J., F. Ertugrul, T. Bartόk, R. Mihály, O. Kiss, L. Cseuz and D. Dudits (2002). Improvement of wheat abiotic stress resistance via genetic transformation. Acta Biologica Szegediensis, 46: 5-7.

Safavi, K. and M. J. Asgari (2011). Heavy metal resistance in transgenic plants. International Conference on Food Engineering and Biotechnology IPCBEE, 9 (2011): IACSIT Press, Singapore, 286-290.

Sarker, R. H., A. Biswas, B. M. Mustafa, S. Mahbub and M. I. Hoque (2003). Agrobacterium-mediated transformation of lentil (Lens culinaris Medik.). Plant Tissue Culture, 13: 1-12.

Subramanyam, K., K. Subramanyam, K. V. Sailaja, M. Srinivasulu and K. Lakshmidevi (2011). Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Reports, 07: Published online: 07 January 2011, doi 10.1007/s00299-010-0996-4.

Toldi, O., S. Tόth, A. Oreifig, E. Kiss and B. Jenes (2000). Production of phosphinothricin tolerant rice (Oryza sativa L.) through the application of phosphinothricin as growth regulator. Plant Cell Reports, 19: 1226-1231.

Velich, I., P. Varrό and A. Gémesné Juhász (1994). Biotic and abiotic stressors in the bean. II. Study of drought stress reaction complex. International Journal of Horticultural Science, 26: 71-74.

Wu, H., C. Sparks, B. Amoah and H. Jones (2003). Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Reports, 21: 659-668.

Downloads

Published

2016-01-12

Issue

Section

Articles