GENETIC TRANSFORMATION AND REGENERATION OF COM- MON BEAN (Phaseolus vulgaris L.) USING Agrobacterium SYSTEM

Authors

  • E. A. EISSA Genetics Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt

Abstract

Agrobacterium-mediated transformation and regeneration systems has been achieved for two varieties “Fönix” and “Maxidor” of common beans. Transformation ability of cotyledonary nodes explant were tested by A. tumefaciens EHA101 (pEHA101::pTd33) with the nptII and gusA genes, or A281 (pRGG bar H1) with the bar and gusA genes. Transgenic for both bean varieties with nptII gene, or bar gene were produced through this approach. Among different selection methods, 100 mg/l kanamycin, or 4 mg/l herbicide phosphinothricin turned to be optimal, resulting in the highest transformation efficiency. Transgenic common bean plants demonstrated enhanced growth ability under antibiotic kanamycin, or herbicide phosphinothricin stress conditions. The increased resistance was also reflected by delayed development of damage symptoms caused by kanamycin, or phosphinothricin stress. Cotyledonary nodes were found to be effective in formation of multiple shoots cultured on selection MS medium supplemented with 1 mg/l BA, 0.1 mg/l NAA and plus 100 mg/l kanamycin, or 4 mg/l phosphinothricin. Stable expression of the gusA was observed in various parts of the transformed tissues. Optimal transformation conditions were obtained for both bean varieties by co-cultivating cotyledonary node explants with Agrobacterium in MS regeneration medium plus 100 µM acetosyringone for 3 days. The nodal region was punctured, wounded and infected with Agrobacterium strain by overnight immersion in bacterial suspension plus 100 µM acetosyringone. This wounding pattern permits Agrobacterium to penetrate deeper and more completely throughout the tissue, and increasing the probability of infecting plant cells. After inoculation for 3 hours and co-cultivation for 3 days, the explant nodes were cultured on MS medium supplemented with 1 mg/l BA and 0.1 mg/l NAA, pH 5.7. The explant nodes were transferred three times at three day intervals to fresh MS medium plus 500 mg/l carbenicillin and 800 mg/l cefotaxime to eliminate Agrobacterium overgrowth of the target region. After cocultivation for 24 hours on MS medium, the explants nodes were transferred to a selective medium containing 100 mg/l kanamycin, or 4 mg/l phosphinothricin. Gene expression of kanamycin resistance (nptII), or herbicide phosphinothricin resistance (bar) and gusA in transformed buds and shoots for both bean varieties was demonstrated by selection test and gusA histochemical analysis. Shoots and buds of transformed explants continued on selective media. Putative transformed green shoots were transferred onto kanamycin, or phosphinothricin containing medium to verify their ability to root. Expression of the β-glucuronidase reporter gene was verified by histochemical staining.

References

Aida, R., Y. Hirose, S. Kishimoto and M. Shibata (1999). Agrobacterium tumefaciens-mediated transformation of Cyclamen persicum Mill. Plant Science, 148: 1-7.

Allavena, A. (1985). Infection of Phaseolus vulgaris with strains of Agrobacterium tumefaciens and A. rhizogenes. Annual Report of the Bean Improvement Cooperative, 28: 90-91.

Amugune, N. O., B. Anyango and T. K. Mukiama (2011). Agrobacterium-mediated transformation of common bean. African Crop Science Journal, 19: 137-147.

Arellano, J., S. I. Fuentes, P. Castillo-España and G. Hernández (2009). Regeneration of different cultivars of common bean (Phaseolus vulgaris L.) via indirect organogenesis. Plant Cell, Tissue and Organ Culture, 96: 11-18.

Aragão, F. J. L., L. M. G. Barros, A. C. M. Brasileiro, S. G. Ribeiro, F. D. Smith, J. C. Sanford, J. C. Faria and E. L. Rech (1996). Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.) cotransformed via particle bombardment. Theor. Appl. Genet., 93: 142-150.

Aragão, F. J. L. and E. L. Rech (1997). Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.) of a Carioca cultivar. International Journal of Plant Sciences, 158: 157-163.

Aragão, F. J. L., L. M. G. Barros, M. V. de Sousa, M. F. Grossi de Sá, E. R. P. Almeida, E. S. Gander and E. L. Rech (1999). Expression of a methionine-rich storage albumin from the Brazil nut (Bertholletia excelsa H.B.K., lecythidaceae) in transgenic bean plants (Phaseolus vulgaris L., Fabaceae). Genetics and Molecular Biology, 22: 445-449.

Aragão, F. J. L. and J. C. Faria (2009). “First transgenic geminivirus-resistant plant in the field”. Nature Biotechnology, 27: 1086-1088.

Baron, C. and P. C. Zambryski (1995). The Plant response in pathogenesis; symbiosis; and wounding: variations on a common theme?. Annual Review of Plant Genetics, 29: 107-129.

Becker, J., T. Vogel, J. Iqbal and W. Nagl (1994). Agrobacterium-mediated transformation of Phaseolus vulgaris. Adaptation of some conditions. Annual Report of the Bean Improvement Cooperative, 37: 127-128.

Bidney, D., C. Scelonge, J. Martich, M. Burrus, L. Sims and G. Huffman (1992). Microprojectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Molecular Biology, 18: 301-313.

Billings, S., G. Jelenkovic, C. K. Chin and J. Eberhardt (1997). The effect of growth regulators and antibiotics on eggplant transformation. Journal of the American Society for Horticultural Science, 122: 158-162.

Brasileiro, A. C. M., F. J. L. Aragão, S. Rossi, D. M. A. Dusi, L. M. G. Barros and E. L. Rech (1996). Susceptibility of common and tepary beans to Agrobacterium spp. strains and improvement of Agrobacterium-mediated transformation using microprojectile bombardment. Journal of the American Society for Horticultural Science, 121: 810-815.

Chai, B., S. B. Maqbool, R. K. Hajela, D. Green, J. M. Vargas, Jr, D. Warkentin, R. Sabzikar and M. B. Sticklen (2002). Cloning of a chitinase-like cDNA (hs2), its transfer to creeping bentgrass (Agrostis palustris Huds.) and development of brown patch (Rhizoctonia solani) disease resistant transgenic lines. Plant Science, 163: 183-193.

Colpaert, N., S. Tilleman, M. van Montagu, G. Gheysen and N. Terryn (2008). Composite Phaseolus vulgaris plants with transgenic roots as research tool. African Journal of Biotechnology, 7: 404-408.

De Kathen, A. and H. J. Jacobsen (1990). Agrobacterium tumefaciens-mediated transformation of Pisum sativum L. using binary and cointegrate vectors. Plant Cell Reports, 9: 276-279.

Delgado-Sánchez, P., M. Saucedo-Ruiz, S. H. Guzmán-Maldonado, E. Villordo-Pineda, M. González-Chavira, S. Fraire-VelÁzquez, J. A. Acosta-Gallegos and A. Mora-Avilés (2006). An organogenic plant regeneration system for common bean (Phaseolus vulgaris L.). Plant Science, 170: 822-827.

Dillen, W., G. Engler, M. Van Montagu and G. Angenon (1995). Electroporation-mediated DNA delivery to seedling tissues of Phaseolus vulgaris L. (common bean). Plant Cell Reports, 15: 119-124.

Dillen, W., M. Zambre, J. De Clercq, A. Goossens, J. Kapila, E. Vranová, M. Van Montagu and G. Angenon (2000). In vitro regeneration and Agrobacterium-mediated transformation of Phaseolus vulgaris L. (common bean) and P. acutifolius A. gray (tepary bean). Acta Horticulturae, 521: 59-65.

Eissa, A. E., Gy. Bisztray and I. Velich (1999). Regeneration in Phaseolus vulgaris L.: High-frequency induction of shoot formation in intact seedlings and seedling node explants. Publications of the University of Horticulture and Food Industry, LVIII: 113-118.

Eissa, A. E., Gy. Bisztray and I. Velich (2002). Plant regeneration from seedling explants of common bean (Phaseolus vulgaris L.). Acta Biologica Szegediensis, 46: 27-28.

Franklin, C. I., T. N. Trieu, R. A. Gonzales and R. A. Dixon (1991). Plant regeneration from seedling explants of green bean (Phaseolus vulgaris L.) via organogenesis. Plant Cell, Tissue and Organ Culture, 24: 199-206.

Franklin, C. I., T. N. Trieu, B. G. Cassidy, R. A. Dixon and R. S. Nelson (1993). Genetic transformation of green bean callus via Agrobacterium-mediated DNA transfer. Plant Cell Reports, 12: 74-79.

Gatica Arias, A. M, J. M. Valverde, P. R. Fonseca and M. V. Melara (2010). In vitro plant regeneration system for common bean (Phaseolus vulgaris): effect of N6-benzylaminopurine and adenine sulphate. Electronic Journal of Biotechnology, 13: 1-8.

Geetha, N., P. Venkatachalam and G. Lakshmi Sita (1999). Agrobacterium-mediated genetic transformation of pigeonpea (Cajanus cajan L.) and development of transgenic plants via direct organogenesis. Plant Biotechnology, 16: 213-218.

Godwin, I. D., G. Todd, B. V. Ford-Lioyd and H. J. Newbury (1991). The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Reports, 9: 671-675.

Godwin, I. D., B. V. Ford-Lioyd and H. J. Newbury (1992). In vitro approaches to extending the hostrange of Agrobacterium for plant transformation. Australian Journal of Botany, 40: 751-763.

González, R. G., D. S. Sánchez, Z. Z. Guerra, J. M. Campos, A. L. Quesada, R. M. Valdivia, A. D. Arencibia, K. Q. Bravo and P. D. S. Caligari (2008). Efficient regeneration and Agrobacterium tumefaciens mediated transformation of recalcitrant sweet potato (Ipomoea batatas L.) cultivars. Asia Pacific Journal of Molecular Biology and Biotechnology, 16: 25-33.

Hamdy, M. A. A. and K. Hattori (2006). In vitro micropropagation of (Vicia faba L.) cultivars ʻWaza Soramame and Cairo 241ʼ by nodal explants proliferation and somatic embryogenesis. Biotechnology, 5: 32-37.

Harini, S. S. and N. Sathyanarayana (2009). Somatic embryogenesis in Mucuna pruriens. African Journal of Biotechnology, 8: 6175-6180.

Hassan, F., M. Imdadul Hoque, H. Kiesecker and H. J. Jacobsen (2007). Transient GUS expression in decapitated lentil embryos. Plant Tissue Culture and Biotechnology, 17: 97-102.

Hinchee, M. A. W., D. V. Connor-Ward, C. A. Newell, R. E. McDonnell, S. J. Sato, C. S. M. Gasser, D. A. Fischhoff, D. B. Re, R. T. Fraley and R. B. Horsch (1988). Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology, 6: 915-922.

Hussain, A. F., G. H. Anfoka and D. S. Hassawi (2008). Transformation of tomato with TYLCV gene silencing construct using optimized Agrobacterium-mediated protocol. Biotechnology, 7: 537-543.

Ignacimuthu, S. and S. Prakash (2006). Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. Journal of Biosciences, 31: 1-7.

Jaiwal, P. K., R. Kumari, S. Ignacimuthu, I. Potrykus and C. Sautter (2001). Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek) - a recalcitrant grain legume. Plant Science, 161: 239-247.

Jefferson, R. A. (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5: 387-405.

Karakaya, A. and S. Ӧzcan (2001). Susceptibility of different bean (Phaseolus vulgaris L.) cultivars to Agrobacterium tumefaciens. Turkey Journal of Biology, 25: 447-452.

Kelly, J. D. (2010). The story of bean breeding, white paper prepared for bean CAP & PBG works on the topic of dry bean production and breeding research in the USA. Michigan State University, June 2010: 1-29.

Kuginuki, Y. and H. Tsukazaki (2001). Regeneration ability and Agrobacterium-mediated transformation of different cultivars in Brassica oleracea L. and B. rapa L. (syn. B. campestris L.). Journal of Japanese Society for Horticultural Science, 70: 682-690.

Kwapata, K., R. Sabzikar, M. B. Sticklen and J. D. Kelly (2010). In vitro regeneration and morphogenesis studies in common bean. Plant Cell, Tissue and Organ Culture, 100: 97-105.

Kwapata, K., T. Nguyen and M. Sticklen (2012). Genetic transformation of common bean (Phaseolus vulgaris L.) with the Gus color marker, the Bar herbicide resistance, and the barley (Hordeum vulgare) HVA1 drought tolerance genes. International Journal of Agronomy, 2012: 1-8.

Lee, Y. M., S. Jin, W. S. Sim and E. W. Nester (1995). Genetic evidence for direct sensing of phenolic compound the Vir A protein of Agrobacterium tumefaciens. Proceeding of National Academy for Sciences USA, 92: 12245-12249.

Lee, T. J., D. P. Coyne, Z. Zhang, T. E. Clemente and A. Mitra (2001). Approaches to develop an Agrobacterium-mediated transformation system via direct shoot organogenesis in common bean (Phaseolus vulgaris L.). Annual Report of the Bean Improvement Cooperative, 44: 37-38.

Liu, Z., B. J. Park, A. Kanno and T. Kameya (2005). The novel use of a combination of sonication and vacuum infiltration in Agrobacteriummediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Molecular Breeding, 16: 189-197.

Malik, K. A. and P. K. Saxena (1991). Regeneration in Phaseolus vulgaris L. Promotive role of N6-benzylaminopurine in cultures from juvenile leaves. Planta, 184: 148-150.

Malik, K. A. and P. K. Saxena (1992). Regeneration in Phaseolus vulgaris L.: High-frequency induction of direct shoot formation in intact seedlings by N6-benzylaminopurine and thidiazuron. Planta, 186: 384-389.

Mao, J. Q., M. A. Zaidi, J. T. Arnason and I. Altosaar (2006). In vitro regeneration of Vigna unguiculata (L.) Walp. cv. Blackeye cowpea via shoot organogenesis. Plant Cell, Tissue and Organ Culture, 87: 121-125.

Mariotti, D., G. S. Fontana and L. Santini (1989). Genetic transformation of grain legumes: Phaseolus vulgaris L. and P. coccineus L. Journal of Genetics and Plant Breeding, 43: 77-82.

McClean, P., J. Simental, P. Chee and J. L. Slightom (1988). Transformation of dry bean tissues via Agrobacterium vectors. Annual Report of the Bean Improvement Cooperative, 31: 47-48.

McClean, P. and K. F. Grafton (1989). Regeneration of dry bean (Phaseolus vulgaris L.) via organogenesis. Plant Science, 60: 117-122.

McClean, P., P. Chee, B. Held, J.Simental, R. F. Drong and J. L. Slightom (1991). Susceptibility of dry bean (Phaseolus vulgaris L.) to Agrobacterium infection: Transformation of cotyledonary and hypocotyl tissues. Plant Cell, Tissue and Organ Culture, 24: 131-138.

Mihály, R., E. Kótai, O. Kiss and J. Pauk (2002). In vitro selection of transformed foreign gene (bar) in wheat anther culture. Acta Biologica Szegediensis, 46: 9-10.

Mohamed, M. F., P. E. Read and D. P. Coyne (1992). Plant regeneration from in vitro culture of embryonic axis explants in common and tepary beans. Journal of the American Society for Horticultural Sci- ence, 117: 332-336.

Murashige, T. and F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.

Naz, S., A. Ali, F. A. Siddique and J. Iqbal (2007). Multiple shoot formation from different explants of chick pea (Cicer arietinum L.). Pakistan Journal of Botany, 39: 2067-2073.

Nehra, N. S., R. N. Chibbar, K. K. Kartha, R. S. S. Datla, W. L. Crosby and C. Stushnoff (1990). Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Reports, 9: 293-298.

Öktem, H. A. (1998). Development of phosphinothricin resistant fertile transgenic tobacco plants. Acta Agronomica Hungarica, 46: 97-104.

Rech, E. L., G. R. Vianna and F. J. L. Aragão (2008). High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nature Protocols, 3: 410-418.

Russell, D. R., K. M. Wallace, J. H. Bathe, B. J. Martinell and D. E. McCabe (1993). Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Reports, 12: 165-169.

Safavi, K. and M. J. Asgari (2011). Heavy metal resistance in transgenic plants. International Conference on Food Engineering and Biotechnology-IPCBEE, 9: 286-290. (2011) © (2011) IACSIT Press, Singapore

Sarker, R. H., A. Biswas, B. M. Mustafa, S. Mahbub and M. I. Hoque (2003). Agrobacterium-mediated transformation of lentil (Lens culinaris Medik). Plant Tissue Culture, 13: 1-12.

Schryer, P. A., Q. Lu, A. Vanderberg and K. E. Bett (2005). Rapid regeneration of Phaseolus angustissimus and P. vulgaris from very young zygotic embryos. Plant Cell, Tissue and Organ Culture, 83: 67-74.

Svetleva, D., M. Velcheva and G. Bhowmik (2003). Biotechnology as a useful tool in common bean (Phaseolus vulgaris L.) improvement. Euphytica, 131: 189-200.

Toldi, O., S. Tóth, A. S. Oreifig, E. Kiss and B. Jenes (2000). Production of phosphinothricin-tolerant rice (Oryza sativa L.) through the application of phosphinothricin as growth regulator. Plant Cell Reports, 19: 1226-1231.

Torres, A. C., D. J. Cantliffe, B. Laughner, M. Bieniek, R. Nagata, M. Ashraf and R. J. Ferl (1993). Stable transformation of lettuce cultivar South Bay from cotyledon explants. Plant Cell, Tissue and Organ Culture, 34: 279-285.

Trick, H. N., R. D. Dinkins, E. R. Santarem, R. Di, V. Samoylov, C. A. Meurer, D. R. Walker, W. A. Parrott, J. J. Finer and G. B. Collins (1997). Recent advances in soybean transformation. Plant Tissue Culture and Biotechnology, 3: 9-24.

Van Wordragen, M. F. and H. J. M. Dons (1992). Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Molecular Biology Reporter, 10:12-36.

Varisai Mohamed, S., J. M. Sung, T. L. Jeng and C. S. Wang (2006). Organogenesis of Phaseolus angularis L.: high efficiency of adventitious shoot regeneration from etiolated seedlings in the presence of N6-benzylaminopurine and thidiazuron. Plant Cell, Tissue and Organ Culture, 86: 187-199.

Veltcheva, M. and D. Svetleva (2005). In vitro regeneration of Phaseolus vulgaris L. via organogenesis from petiole explants. Journal Central European Agriculture, 6: 53-58.

Veltcheva, M., D. Svetleva, Sp. Petkova and A. Perl (2005). In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.) Problems and progress. Scientia Horticulturae, 107: 2-10.

Vernade, D., A. Herrera-Estrella, K. Wang and M. Van Montagu (1988). Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. Journal of Bacteriology, 170: 5822-5829.

Wu, H., C. Sparks, B. Amoah and H. D. Jones (2003). Factors influencing successful Agrobacterium-mediated genetic transformation of wheat. Plant Cell Reports, 21: 659-668.

Yusuf, M., A. A. Raji, I. Ingelbrecht and M. D. Katung (2008). Regeneration efficiency of cowpea [Vigna unguiculata (L.) Walp.] via embryonic axes explants. African Journal of Plant Science, 2: 105-108.

Zambre, M. A., J. De Clercq, E. Vranová, M. Van Montagu, G. Angenone and W. Dillen (1998). Plant regeneration from embryo-derived callus in Phaseolus vulgaris L. (common bean) and P. acutifolius A. gray (tepary bean). Plant Cell Reports, 17: 626-630.

Zhang, Z., D. P. Coyne and A. Mitra (1997). Factors affecting Agrobac-terium-mediated transformation of common bean. Journal of the American Society for Horticultural Science, 122: 300-305.

Downloads

Published

2016-01-12

Issue

Section

Articles