BREEDING FOR ENHANCED YIELD AND QUALITY TRAITS IN COWPEA (Vigna unguiculata L.)

Authors

  • T. A. El-Akkad Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha,
  • Entsar, M. E. Abo-Hamda Horticulture Research Institute, Agriculture Research Center, Giza
  • Amany, H. A. Ghareb Horticulture Research Institute, Agriculture Research Center, Giza,

Abstract

This investigation was carried out at Qaha Vegetable Research Farm, ARC, Qalyoubia Governorate, Egypt spanning from 2022 to 2023,with the aim of exploring the genetic variability and heritability of key economic characters while developing promising cowpea (Vigna unguiculata L.) lines. The study incorporated twenty novel lines alongside five commercially established cowpea cultivars. Notably, the results underscored that a substantial proportion of the phenotypic variance (σ2 ) was attributable to genetic variance (σ2 ), excluding the trait related to the number of seeds per pod. Moreover, the broad-sense heritability estimates demonstrated moderate to high values (ranging from 43.64% to 79.28%) across all scrutinized traits. This suggests that the discernible phenotypic variations among the genotypes were predominantly of genetic origin, with minimal environmental impact on the observed phenotypic diversity. Consequently, the potential for enhancing these traits through selection based on early segregating generations is highlighted. Genetic diversity of cowpea genotypes estimated using IRAP markers (Inter Retrotransposon Amplified Polymorphism). The total number of reproducible fragments amplified by the ten primers reached 108 bands, of which 44 were polymorphic fragments. This represented a level of polymorphism of 40.7%, which indicates a very high level of polymorphism among the studied cowpea genotypes. Noteworthy lines, such as CP 25-2, CP 25-3, CP 56, CP 56-1, and CP 65, exhibited promising attributes, including high productivity, favorable yield components, earliness, and desirable seed color. These lines are earmarked for potential certification pending further evaluations, showcasing their potential contribution to enhanced cowpea cultivation.

Author Biography

T. A. El-Akkad, Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Benha,

Moshtohor Research Park, Molecular Biology Lab, Benha University, Benha, Egypt.

References

Abedinpour H., Ranjbar G. A., Jelodar N. B. and Golein B., (2014). Evaluation of genetic diversity in Citrus genotypes by IRAP molecular marker. Int. J. Farming Allied Sci., 3 (2):230-234.

Adams B., Osekre E. A. and Amoah S., (2017). Evaluation of cowpea (Vigna unguiculata L.) genotypes’ growth and yield performance and resistance to the cowpea seed beetle, Callosobruchusm aculates F. J. Exper. Agric. Inter., 19 (5): 1-9.

Agbogidi M. O., (2010). Screening six cultivars of cowpea (Vigna unguiculata L.) Walp for adaptation to soil contaminated with spent engine oil. J. Envir. Chem. Ecotoxicology, 2: 103-109.

Ahmed S., Zargar M. A. and Ali T., (2005). Genetic variability, heritability, genetic advance for seed yield and component traits in cowpea. Natnl. J. Pl. Improv., 7 (2): 85-87.

Annicchiarico P., (2006). Diversity, genetic structure, distinctness and agronomic value of Italian lucerne (Medicago sativa L.) landraces. Euphytica, 148: 269-282.

Atta B. M., Haq M. A. and Shah T. M., (2008). Variation and inter relationships of quantitative traits in chickpea (Cicer arietinum L.). Pak. J. Bot., 40 (2): 637-647.

Bado B. V., Bationto A. and Cescas M., (2006). Assessment of cowpea and groundnut contributions to soil fertility and succeeding sorghum yields in the Guinean savannah zone of Burkina Faso (West Africa). Biol. Fertil. Soils, 43: 171-176.

Badr A., (2008). Molecular approaches to plant systematic and evolution. Taeckholmia, 28: 127-167.

Badr A., El-Sherif N., Aly S., Ibrahim S. D. and Ibrahim M., (2020). Genetic diversity among selected Medicago sativa cultivars using Inter-Retrotransposon-Amplified Polymorphism, Chloroplast DNA barcodes and morpho-agronomic trait analyses. Plants, 9 (8): 995. https://doi.org/10.3390/plants9080995

Bhandari H. R., NishantBhanu A., Srivastava K., M. N. Singh, Shreya and Hemantaranjan A., (2017). Assessment of genetic diversity in crop plants - an overview. Adv. Plants Agric. Res., 7 (3): 279-286. https://doi.10.15406/apar.2017.07.00255

Boukar O., Belko N., Chamarthi S., Togola A., Batieno J., Owusu E., Haruna M., Diallo S., Umar M. L. and Olufajo O., (2019). Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breed., 138: 415-424.

Bourque G., Burns K. H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvak Z., Levin H. L., Macfarlan T. S., Mager D. L. and Feschotte C., (2018). Ten things you should know about transposable elements. Genome Biology, 19: 199.

Burton G. W., (1952). Quantitative inheritance in grasses. Proceedings of the 6th International Grassland Cong., Pennsylvania, USA 277-283.

Cheraghi A., Rahmani F. and Hassanzadeh-Ghorttapeh A., (2018). IRAP and REMAP based genetic diversity among varieties of Lallemanti aiberica. Molecular Biology Res. Communications. 7 (3): 125-132. Doi. 10.22099/mbrc.2018.29924.1327.

DagnonY., Palanga K., Bammite D., Bodian A., Comlan G., Daniel F. and Koffi T., (2022). Genetic diversity and population structure of cowpea [Vigna unguiculata (L.) Walp.] accessions from Togo using SSR markers. PLoS ONE, 17 (10): e0252362. https://doi.org/10.1371/journal.pone.0252362

Dalorima T. L., Waziri A., Mohammed T. and Kyari Z., (2014). Evaluation of different varieties of cowpea (Vigna unguiculata) in Sudan Savanna of BornoState. The international J. sci. Technol. 2 (9): 37-42.

Damarany A. M. , (1994). Estimates of genotypic and phenotypic correlation, heritability and potency of gene set in cowpea (Vigna unguiculata [L.] Walp). Assuit J. Agric. Sci., 25: 1-8.

Dugje I., Omoigui L., Ekeleme F., Kamara A. and Ajeigbe H., (2009). Farmers’ Guide to Cowpea Production in West Africa. IITA, Ibadan, Nigeria.

Duncan D. B., (1955). Multiple range and multiple F test. Biometrics, 11: 1-42.

El-Shazly H. H., HAhmed I. S., Hamouda M. M. and Badr A., (2020). Genetic diversity and population structure of the medicinal plant Achillea fragrantissima (Forssk.) Sch. Bip. in the mountains of South Sinai, Egypt. Plant Gene, 21: 100212. doi.org/10.1016/j.plgene.2019.100212.

Farouji A. E., Khodayari H., Saeidi H. and Rahiminejad M. R., (2015). Genetic diversity of diploid Triticum species in Iran assessed using inter-retroelement amplified polymorphisms (IRAP) markers. Biology, 70: 52-60.

Gbadegesin M. A. and Beeching J. R., (2010). Enhancer/Suppressor mutator (En/Spm)-like transposable elements of cassava (Manihot esculenta) are transcriptionally inactive. Genet. Mol. Res.9: 639-650. http://dx.doi.org/10.4238/vol9-2gmr713

Gnanamurthy S., Mariyammal S., Dhanavel D. Bharathi and T., (2012). Effect of gamma rays on yield and yield components characters R3 generation in cowpea (Vigna unguiculata (L.). Walp.). Inter. J. Res. Plant Sci., 2: 39-42.

Gomes A. M. F., Draper D., Nhantumbo N., Massinga R., Ramalho J. C., Marques I. and Ribeiro-Barros A. I., (2021). Diversity of cowpea [Vigna unguiculata (L.) Walp] landraces in Mozambique: New opportunities for crop improvement and future breeding programs. Agronomy, 11 (1): 1-12.

Gomez A. K. and Gomez A. A., (1984). Statistical Procedures for Agricultural Research. 2nd edition & Sons Pub., PP.139-153.

Hussein A. H. and Abd El-Hady M. A. H., (2015). A comparison of some promising lines and commercial cultivars of cowpea. Egypt. J. Plant Breed. 19 (1): 101-109.

Johnson H. W., Robinson H. F. and Comstock R. E., (1955). Estimates of genetic and environmental variability in soybeans. Agronomy J., 47: 314-318.

Ibro G., Sorgho M. C., Idris A. A., Moussa B., Baributsa D. and Lowenberg-DeBoer J., (2014). Adoption of cowpea hermetic storage by women in Nigeria, Niger and Burkina Faso. J. Stored Products Res., 58: 87-96.

Jayathilake C., Visvanathan R., Deen A., Bangamuwage R., Jayawardana B. C., Nammi S. and Liyanage R., (2018) Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric., 98: 4793-4806.

Kalendar R. and Schulman A. H., (2007). IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat. Protoc., 1 (5): 2478-2484.

Kalendar R. and Schulman A. H., (2013). Transposon-Based Tagging: IRAP, REMAP, and iPBS. Adv. Struct. Saf. Stud. 1115: 233-255.

Kalendar R. and Schulman A. H., (2014).Transposon-based tagging: IRAP, REMAP, and iPBS. In: "Molecular Plant Taxonomy. Methods in Molecular Biology(Methods and Protocols)", Besse, P. (Ed.), Vol 1115. Humana Press, Totowa, NJ.

Kalendar R., Antonius K., Smykal P. and Schulman A. H., (2010). IPBS: A universal method for DNA fingerprinting and retrotransposon isolation. Theor. Appl. Genet.,121 (8):1419-1430. doi:10.1007/ s00122-010-1398-2.

Khaleghi E., Sorkheh K., Chaleshtori M. H. and Ercisli S., (2017). Elucidate genetic diversity and population structure of Olea europaea L. germplasm in Iran using AFLP and IRAP molecular markers. 3 Biotech., 7: 71. doi: 10.1007/s13205-017-0669-x.

Kumar A. and Bennetzen J. L., (1999). Plant Retrotransposons. Annu. Rev. Genet., 33: 479-532.

Lopes F. C. C., Gomes R. L. F. and Filho F. R. F., (2003). Genetic control of cowpea seed sizes. Scientia Agricola, 60 (2): 315-318.

Mandoulakani B. A., Piri Y., Darvishzadeh R., Bernoosi I. and Jafari M., (2012). Retro element in sertional polymorphism and genetic diversity in Medicago sativa populations revealed by IRAP and REMAP markers. Plant Mol. Bio. Rep., 30 (2): 286-296.

Maniatis T., Fritsch E. F. and Sambrook J., (1988). Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harb: New York, USA.

More A. D. and Borkar A. T., (2016). Analysis of genetic variability, heritability and genetic advance in Phaseolus vulgaris L. Inter. J. Current Microbio. App. Sci., 5: 494-503.

Nasri S., Mandoulakani B. A., Darvishzadeh R. and Bernousi I., (2013). Retrotransposon insertional polymorphism in Iranian bread wheat cultivars and breeding lines revealed by IRAP and REMAP markers. Biochem. Genet., 51: 927-943.

Padulosi S. and Ng N. Q., (1997). Origin, taxonomy and morphology of Vigna unguiculata (L.) Walp. Advances in cowpea research. Inter. Inst. Tropical Agric. (IITA) and Japan Inter. Res. Center Agric. Sci. (JIRCAS), Ibadan, Nigeria, pp. 1- 12.

Rangel A., Domont G. B., Pedrosa C. and Ferreira S. T., (2003). Functional properties of purified vicilins from cowpea (Vigna unguiculata) and pea (Pisum sativum)and cowpea protein isolate. J. Agric. Food Chem., 51:5792-5797.

Sarr A., Bodian A., Gbedevi K. M., Ndir K. N. and Ajewole O. O., (2020). Genetic diversity and population structure analyses of wild relatives and cultivated cowpea (Vigna unguiculata (L.) Walp.) from Senegal using simple sequence repeat markers. Plant Mol. Biol. https://doi.org/10.1007/s11105-020-01232-z

Scarano D., Rubio F., Ruiz J. J., Rao R. and Corrado G., (2014). Morphological and genetic diversity among and within common bean (Phaseolus vulgaris L.) landraces from the Campania region (Southern Italy). ScientiaHorticulturae, 180:72-78.

Shehata M., Sayed L., Badawy F. and Fahmy E., (2015). Assessment of genetic diversity in yeast and barley by retrotransposon-based molecular markers. Egyptian J. Gene. Cytology, 44: 371-385.

Shitian L., Muthusamy R., Kunnummal K. V., Ruslan K., Kim Y. and Mingbing Z., (2020). Development and deployment of high-throughput retrotransposon-based markers reveal genetic diversity and population structure of Asian Bamboo. Forests, 11 (1): 31. https://doi.org/10.3390/f11010031

Singh B. B., Chambliss O. L. and Sharma B., (1997). Recent advances in cowpea. In: B. B. Singh, D. R. Mohan Raj, K. E. Dashiel and L. E. N. Jackai (eds.). Adv. Cowpea Res. Co-publication of Inter. Inst. Tropical Agric. (IITA) and Japan Inter. Res. Center Agric. Sci. (JIRCAS), Ibadan, Nigeria, 30-49.

Singh R. K. and Chaudhary B. D., (1995). Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, New Delhi, India.

Somasundaram M., Subbaraya U. S., Ramaraj S., Palani D., Mustaffa M. M., Kalaimughilan K. and Chandrasekar A., (2023). Inter retrotransposon based genetic diversity and phylogenetic analysis among the Musa germplasm accessions. J. Plant Biochem. Biotech. 29: 114-124. https://doi.org/10.1007/s13562-019-00519-x

Steel R. C. D. and Torrie J. H., (1981). Principles and Procedures of Statistics. McGraw-Hill, New York, USA.

Taheri M. T., Alavi-Kia S. S., Mohammadi S. A. and Vahed M. M., (2018). Assessment of genetic diversity and relationships among Triticum urartu and Triticum boeoticum populations from Iran using IRAP and REMAP markers. Genet. Resour. Crop. Evol., 65: 1867-1878.

Xiong H., Shi A., Mou B., Qin J., Motes D. and Lu W., (2016). Genetic diversity and population structure of cowpea (Vigna unguiculata L. Walp). PLoS One., 4:1-15. https://doi.org/10.1371/journal.pone.0160941

Downloads

Published

2024-07-08

Issue

Section

Articles