IMPROVEMENT OF SALT TOLERANCE TO TRANSGENIC PO-TATO (Solanum tuberosum L.) BY ABUNDANT PROTEIN (HVA1) GENE TRANSFER

Authors

  • M. H. REFAAT Department of Genetics and Genetic Engineering, Faculty of Agriculture, Banha University Moshtohor Research Park, Molecular Biology Lab., Banha University
  • T. A. EL-AKKAD Department of Genetics and Genetic Engineering, Faculty of Agriculture, Banha University Moshtohor Research Park, Molecular Biology Lab., Banha University
  • SHERIF S. SALEH Tissue Culture and Germplasm Conservation Lab. Hort. Res. Inst. Agric. Res. Center
  • B. A. ABDELGAWED Agriculture Genetic Engineering Research Institute (AGERI), ARC, Giza

Abstract

Potato, (Solanum tuberosum L.) is an economically crucial crop species and focus of a big agricultural industry. Drought and salt stresses are two predominant abiotic strain elements ensuing in potato, (Solanum tuberosum L.) and biomass yield losses. In an attempt to produce salt tolerant potato plants, rapidly growing embryogenic calli were produced in vitro in various concentrations of 2, 4-D (T1 media) and NAA (T2 media). Different explants were used to evaluate callus formation and somatic embryogenesis formation on potato. Friable embryogenic calli which induced from leaves was 85.15% were formed in the TI medium contained 2,4-D at 4 mg/l. These calli grew fast in comparison to embryogenic calli formed in TII medium. Transformation was achieved with pABI plasmid which contained the barley HVA1 (Hordeum vulgaris abundant protein) and the herbicide resistance (bar) genes using gene gun. After growth and selection, the plantlets (two plantlets grew on regeneration media supplemented with 3 mg/ml bialophous) were divided into small pieces and cultured on multiplication media contained BAP at 0.25 mg/l. The explants were subjected to salt stress by the addition of zero, 1000, 3000, 5000 and 7000 ppm NaCl: CaCl2 to MS culture medium. Survival percentages was measured after four weeks for the two subcultures from starting salt treatments as well as shoot number, shoot length and leaves number. The survival percentages in the transformed plants were higher under salt stresses which were recorded 100% for all explants. Moreover, the growth of the transformed explants was more healthy than the other non-transformed explants. The polymerase chain reaction (PCR) and Southern blot hybridization confirmed the integration, of the transgenes.

References

Ahloowalia, B. S. (1982). Plant regenera-tion from callus culture in potato. Euphytica., 31: 755-759.

Alexeenko, T. V. and N. M. Irkaeva (1998). Investigation of callus for-mation and shoot-inducing pro-cesses in strains and F1 interstrain hybrids of strawberry Fragaria vesca L. Genetika., 34: 1100-1105.

Ashakiran, K., V. Sivankalyani and M. Jayanthi (2011). Genotype specific shoots regeneration from different explants of tomato (Solanum lycopersicum L.) using TDZ. Asian J. Plant Sci. Res., 1: 107-113.

Askari, A. and A. Pepoyan (2015). In-creasing salinity tolerance in three potato (Solanum tuberosum L.) cultivares by transferring mtlD gene. IJBPAS., 4: 1013-1019.

Bahieldin, A., H. T. Mahfouz, H. F. Eissa, O. M. Saleh, A. M. Ramadan and I. A. Ahmed (2005). Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiologia Plantarum, 123: 421-427.

Bajaj, Y. P. S. (1987). Biotechnology and 21st century potato, In: Biotechnol-ogy in Agriculture and Forestry, Vol. 3: Potato, pp. 522, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo.

Bohorova, E. N., B. Luna, M. R. Brito, D. L. Huerta and A. D. Hoisington (1995). Regeneration potential of tropical, subtropical, mid-altitude, and highland maize inbreeds. Maydica., 40: 275-281. Carceller, M. and A. D. Ambrogio (1994). Growth and differentiation of cal-lus cultures of sunflower Helian-thus annuus L. in response to NaCl and proline. Phyton Buenos Aires, 55: 115-122.

Checker, V. G., A. K. Chhibbar and P. Khurana (2012). Stress-inducible expression of barley HVA1 gene in transgenic mulberry displays en-hanced tolerance against drought, salinity and cold stress. Transgenic Res., 21: 939-957.

Cullins, C. A. (1991). Breeding for re-sistance to physiological stress. In: Advanced Methods in Plant Breed-ing and Biotechnology, CAB Inter-national Redwood Press. UK, p. 340-351.

Decima, O. C., G. González and D. Lewi (2010). Biolistic maize transfor-mation: Improving and simplifying the protocol efficiency. African Journal of Agricultural Research, 5: 3561-3570.

Delaney, F. J., J. M. Fletcher, S. E. Max-well and P. Satz (1989). A struc-tural model for developmental changes in the determinants of reading achievement. Journal of Clinical Child Psychology, 18: 44-51.

Dure, L. (1993). Structural motifs in lea proteins. Curr. Topics Plant Physiol., 10: 91-103.

Dure, L., M. Crouch, J. Harada, T. H. Ho and J. Mundy (1989). Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol., 12: 475-486,

Goday, A., A. B. Jensen, Macià F. A. Culiáñez, M. Albà, M. Figueras, J. Serratosa, M. Torrent and M. Pagès (1994). The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell, 6: 351-60.

Gonzalez, J. M., E. Friero and N. Jouve (2001). Influence of genotype and culture medium on callus for-mation and plant regeneration from immature embryos of Triticum turgidum cultivars. Plant Breeding, 120: 513-517.

Hong, B., R. Barg and T. H. Ho (1992). Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol. Biol., 18: 663-674. Kreike, C. M., J. R. Koning and F. A. Krens (1990). Non-radio-active detection of single-copy DNA-DNA hybrids. Plant Mol. Rep., 8: 172-179.

Kwapata, K., T. Nguyen and M. Sticklen (2012). Genetic Transformation of Common Bean (Phaseolus vulgaris L.) with the Gus Color Marker, the Bar Herbicide Resistance, and the Barley (Hordeum vulgares L) HVA1 Drought Tolerance Genes. International J. of Agronomy, 2012: 1-8.

Lal, S., V. Gulyani and P. Khurana (2008). Over expression of HVA1 gene from barley generates toler-ance to salinity and water stress in transgenic mulberry (Morusindica). Transgenic Res., 17: 651-663.

Lee, Y. P., S. H. Kim, J. W. Bang, H. S. Lee and S. S. Kwak (2007). En-hanced tolerance to oxidative stress in transgenic tobacco plants ex-pressing three antioxidant enzymes in chloroplasts. Plant Cell Rep., 26: 591-598.

Liu, Y., Y. Zheng, W. Wang and R. Li (2010). Soybean PM2 protein (LEA3) confers the tolerance of Escherichia coli and stabilization of enzyme activity under diverse stresses. Curr. Microbial., 60: 373-378.

Mahajan, S. and N. Tuteja (2005). Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys., 444: 139-58.

Maqbool, B. S., H. Zhong, Y. El-Maghraby, A. Ahmed, B. Chai, W. Wang, R. Sabzikar and B. M. Sticklen (2002). Competence of oat (Avena sativa L.) shoot apical me-ristems for integrative transfor-mation, inherited expression, and osmotic tolerance of transgenic lines containing Hva1. Theor. Appl. Genet., 105: 201-208.

Maxwell, S. E. and H. D. Delaney (1990). Designing experiments and analyz-ing data: A model comparison per-spective. Brooks/Cole Publishing; Pacific Grove, CA.

McCormick, S., J. Niedermeyer, A. Fry, R. Bamason, R. Horsch and R. Fra-ley (1986). Leaf disc transfor-mation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rpt., 5: 81-84.

Moghaieb, R., H. Saneoka and K. Fujita (1999). Plant regeneration from hypocotyl and cotyledon explant of tomato (Lycopersicon esculentum Mill.). Soil Sci. Plant Nutr., 45: 639-646.

Murashige, T. and F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473-497.

Nguyen, T. and M. Sticklen (2013). Bar-ley HVA1 gene confers drought and salt tolerance in transgenic maize (Zea Mays L.). Adv. Crop Sci. Tech., DOI: 10.4172/2329-8863.1000105.

Oh, S. J., S. I. Song, Y. S. Kim H. J. Jang and S. Y. Kim (2005) Arabidopsis CBF3/ DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol., 138: 341-351.

Oraby, H. F., C. B. Ransom, A. N. Kravchenko and M. B. Sticklen (2005) Barley HVA1 gene confers salt tolerance in R3 transgenic oat. Crop Sci., 45: 2218-2227.

Reda, E. A., H. Moghaieb, I. Saneoka and F. Kounosuke (1999). Plant regen-eration from hypocotyl and cotyle-don explant of tomato (Lycopersicone esculentum Mill.). Soil Sci. Plant Nutr., 45: 639-646.

Rohila, J. S., R. K. Jain and R. Wu (2002). Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley HVAl cDNA. Plant Science, 163: 525-532.

Shibli, R. A., M. A. Shatnawi and I. Q. Swaidat (2003). Growth, osmotic adjustment, and nutrient acquisi-tion of bitter almond under induced sodium chloride salinity in vitro. Communications in Soil Science and Plant Analysis, 34: 1969-1979.

Siviamani, E., A. Bahieldin, J. M. Wraith, T. Al-niemi, W. E. Dyer, T. D. Ho and R. Qu (2000). Improved bio-mass productivity and water use ef-ficiency under water deficit condi-tion in transgenic wheat constitu-tively expressing the barley HVA1 gene. Plant Science, 155: 1-9.

Somerville, C. R. and E. M. Meyerowitz (2002). Abscisic acid biosynthesis and signaling. In: The Arabidopsis Book, Rockville M. D., (Eds.). American Society of Plant Biolo-gists.

Unesco, Water Portal (2007). http://www.unesco.org/water.

Stiekema, W. J., E. de Vries-Uijtewaal, L. J. W. Gilissen, E. Flipse, Ramulu K. Sree and B. de Groot (1988). Fate of introduced genetic markers in transformed root clones and re-generated plants of monohaploid and diploid potato genotypes. Theor. Appl. Genet., 78: 185-193.

Vitagliano, C., A. Minnocci, L. Sebastiani, A. Panicucci and G. Lorenzini (1992). Physiological re-sponse of two olive genotypes to gaseous pollutants. Acta Hort., 474: 431-434.

Wang, W., B. Vinocur and A. Altman (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218: 1-14.

Wareh, H. A., N. L. Trolinder and J. R. Gooding (1989). Callus initiation, shoot regeneration, and micropropagation of three potato cultivars. Hortscience, 24: 680-682.

Watanabe, S., K. Y. Kojima and S. Sasaki (2000). Effects of saline and os-motic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tis-sue and Organ Culture, 63: 199-206.

Xu, D., X. Duan, B. Wang, B. Hong, T. Davidho and R. Wu (1996). Ex-pression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stressing transgenic rice. Plant Physiol., 110: 249-257.

Yadav, N. R. and M. B. Sticklen (1995). Direct and efficient plant regener-ation from leaf explants of (Sola-num tuberosum L.) cv. Bintje. Plant Cell Rep., 14: 645-647.

Downloads

Published

2018-09-06

Issue

Section

Articles