MICRORNA UTILITY FOR DIAGNOSING ISCHEMIC STROKE IN EGYPTIAN PATIENTS

Authors

  • MOHAMMAD A. ALSHAWADFI Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City (USC), El-Menoufiya
  • MAHMOUD LOTFY Molecular Biology Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City (USC), El-Menoufiya
  • OLFAT G. SHAKER Medical Biochemistry Department, Faculty of Medicine, Cairo University- Cairo
  • MOFIDA A. KESHK Molecular Diagnostics and Therapeutics Department, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City (USC), El-Menoufiya

Abstract

Stroke is a major public health concern in Egypt with a high overall prevalence rate and a significant impact on mortality. The identification of genetic and molecular factors involved in the development of ischemic stroke (IS) can lead to the identification of new diagnostic and therapeutic targets and the development of personalized medicine approaches for the prevention and treatment of this debilitating disease. MicroRNAs (miR-NAs) could regulate cell proliferation and apoptosis and accumulating published data have showed a correlation of miRNA with stroke pathogenesis. This work aimed to evaluate the expression level of three brain-specific miRNAs in serum: miR-9, miR-15a and miR-16 as a panel, among newly diagnosed IS-Egyptian patients compared to apparently healthy control subjects and to examine its use as diagnostic molecular biomarker for this silent disease. Serum expression level of the tested miRNA panel was detected in all subjects using quantitative real-time polymerase chain reaction (qRT-PCR). The expression levels of the investigated miR-9, miR-15a, and miR-16 had shown to be significantly (P<0.001) increased by 12.85, 5.15, and 5.89-fold change (FC), respectively in IS sera than the control group. Diabetes mellites (DM), hypertension, and NIHSS scoring of the stroke was found to have significant implication on the expression level of miR-9. DM and smoking had significant implications on the expression level of miR-15a. miR-16a had significant correlation to total cholesterol and LDL. Diagnostic potentiality of this panel for IS was tested by performing receiver operating characteristic (ROC) curve analysis, which revealed specificity for the newly tested miRNAs ranging from 95.5% to 99%, with a sensitivity between 71.56% and 82.11%. Finally, we concluded that miR-9, miR-15a, and miR- 16 may play a crucial role in ischemic injury, suggesting their promising role as molecular biomarkers for early diagnosis of IS. Additional studies are recommended on larger IS cohort compared to risky subjects to confirm the role of this panel in this context.

References

Abd-Allah F., Khedr E., Oraby M., Bedair A., Georgy S. and Moustafa R., (2018). Stroke burden in Egypt: data from five epidemiological studies. International Journal of Neuroscience, 128(8):765-771. https://doi.org/10.1080/00207454.2017.1420068

Abdelaleem O., Shaker O., Mohamed M., Ahmed T., Elkhateeb A., Abdelghaffar N., Ahmed N., Khalefa A., Hemeda N. and Mahmoud R., (2022). Differential expression of serum TUG1, LINC00657, miR-9, and miR-106a in diabetic patients with and without ischemic stroke. Frontiers in Molecular Biosciences, 8:758742. https://doi.org/10.3389/fmolb.2021.758742

Abd-Elkader A., Ismail H., Shaker O., Lotfy M., Abdel-Mageed W. and Keshk M., (2020). Alterations in microRNA-15a and “γ-synuclein” expression levels among HCV- related hepatocellular carcinoma patients in Egypt. Research journal of applied biotechnology, 6: 1-10. https://doi.org/10.21608/RJAB.2020.219593

Aref H., Zakaria M., Shokri H., Roushdy T., El-Basiouny A. and El-Nahas N., (2021). Changing the landscape of stroke in Egypt. Cerebrovasc diseases extra., https://doi.org/10.1159/000521271

Bejleri J., Jirström E., Donovan P., Williams D. and Pfeiffer S., (2021). Diagnostic and prognostic circulating microRNA in acute stroke: A Systematic and bioinformatic analysis of current evidence. Journal of Stroke, 23:162-182. https://doi.org/10.5853/jos.2020.05085

Bhattacharya A., Chaturvedi G., Singhal K. and Pandey R., (2020). Experimental toolkit to study RNA level regulation. RNA-based regulation in Human Health and Disease, Academic Press, 19:371-396. https://doi.org/10.1016/B978-0-12-817193-6.00016-9

Chi L., Jiao D., Nan G., Yuan H., Shen J. and Gao Y., (2019). miR-9-5p attenuates ischemic stroke through targeting ERMP1-mediated endoplasmic reticulum stress. Acta Histochemica, 121:151438. https://doi.org/10.1016/j.acthis.2019.08.005

Deng L., Qiu S., Wang C., Bian H., Wang L., Li Y., Wu B. and Liu M. (2019). Effects of the blood urea nitrogen to creatinine ratio on hemorrhagic transformation in AIS patients with diabetes mellitus. Biomed Central Neurology, 19:63. https://doi.org/10.1186/s12883-019-1290-x

Elfert A., Salem A., Abdelhamid A., Salama A., Sourour D., Shaker O. and Keshk M., (2022). Implication of miR122, miR-483, and miR-335 expression levels as potential signatures in HCV-related hepatocellular carcinoma (HCC) in Egyptian patients. Frontiers in Molecular Biosciences, 9: 864839. https://doi.org/10.3389/fmolb.2022.864839

Eyileten C., Wicik Z., De Rosa S., Mirowska-Guzel D., Soplinska A., Indolfi C., Jastrzebska-Kurkowska I., Czlonkowska A. and Postula M., (2018). MicroRNAs as diagnostic and prognostic biomarkers in ischemic stroke- A comprehensive review and bioinformatic analysis. Cells, 7:249. https://doi.org/10.3390/cells7120249

Grandi A., Santi A., Campagnoli S., Parri M., De Camilli E., Song C., Jin B., Lacombe A., Castori-Eppenberger S., Sarmientos P., Grandi G., Viale G., Terracciano L., Chiarugi P., Pileri P. and Grifantini R., (2016). ERMP1, a novel potential oncogene involved in UPR and oxidative stress defense, is highly expressed in Human Cancer. Oncotarget, 7: 63596-610. https://doi.org/10.18632/oncotarget.11550

Guo X., Wang Y., Zheng D., Cheng X. and Sun Y., (2021). LncRNA- MIAT promotes neural cell autophagy and apoptosis in ischemic stroke by up-regulating REDD1. Brain Research,1763:8. https://doi.org/10.1016/j.brainres.2021.147436

Hage V., (2011). "The NIH stroke scale: a window into neurological status". Nursing Spectrum, 24: 44- 49. https://scholar.google.com/scholar?cluster=17036035811335701218&hl=en&as_sdt=2005&sciodt=0,5

Hu J., Qin L., Liu Z., Liu P., Weil H., Wang H., Zhao C. and Ge Z., (2019). miR-15a regulates oxygen glucose deprivation/reperfusion (OGD/R)-induced neuronal injury by targeting BDNF. Kaohsiung Journal of Medical Sciences, 36:27- 34. https://doi.org/10.1002/kjm2.12136

Kothari C., (2004). Research Methodology: Methods and Techniques, New Age International (P) Ltd., Publishers, https://ISBN(13):978-81-224-2488-1

Krützfeldt J., Rajewsky N., Braich R., Rajeev K., Tuschl T., Manoharan M. and Stoffel M., (2005). Silencing of microRNAs in vivo with 'antagomirs'. Nature, 438: 685-9. doi: 10.1038/nature04303

Kumar A., Misra S., Nair P. and Algahtany M., (2021). Epigenetics Mechanisms in Ischemic Stroke: A Promising Avenue? Journal of Stroke & Cerebrovascular Diseases, 30 (5):14. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105690

Leung L., Chan C., Leung Y., Jiang H., Abrigo J., Wang D., Chung J., Rainer T. and Graham C., (2014). Comparison of miR-124-3p and miR-16 for early diagnosis of hemorrhagic and ischemic stroke. Clinica Chimica Acta, 433: 139-144. https://doi.org/10.1016/j.cca.2014.03.007

Liu Y., Zhang J., Han R., Liu H., Sun D. and Liu X., (2015). Downregulation of serum brain specific microRNA is associated with inflammation and infarct volume in acute ischemic stroke. Journal of Clinical Neuroscience, 22: 291-295. https://doi.org/10.1016/j.jocn.2014.05.042

Liu Z., Tian Y., Ander B., Xu H., Stamova B., Zhan X., Turner R., Jickling G. and Sharp F., (2010). Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. Journal of Cerebral Blood Flow & Metabolism, 30:92-101. https://doi.org/10.1038/jcbfm.2009.186

Livak K. and Schmittgen T., (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 (deltac(T)) method. Methods, 25: 402-408. https://pubmed.ncbi.nlm.nih.gov/11846609/

Mens M., Heshmatollah A., Fani L., Ikram M., Ikram M. and Ghanbari M., (2021). Circulatory MicroRNAs as Potential Biomarkers for Stroke Risk: The Rotterdam Study. Stroke, 52(3): 945-953. https://doi.org/10.1161/STROKEAHA.120.031543

Ogata K., Sumida K., Miyata K., Kushida M., Kuwamura M. and Yamate J., (2015). Circulating miR-9* and miR-384-5p as potential indicators for trimethyltin-induced neurotoxicity. Toxicologic Pathology, 43: 198-208. https://doi.org/10.1177/0192623314530533

Olesen K., Madsen M., Gyldenkerne C., Thrane P., Würtz M., Thim T., Jen- sen L., Eikelboom J., Bøtker H., Sørensen H. and Maeng M., (2019). Diabetes mellitus is associated with increased risk of ischemic stroke in patients with and without coronary artery disease. Stroke, 50: 3347- 354. https://doi.org/10.1161/STROKEAHA.119.026099

Sørensen S., Nygaard N-B., Carlsen A., Heegaard N., Bak M. and Christen- sen T., (2017). Elevation of brainenriched miRNAs in cerebrospinal fluid of patients with acute ischemic stroke. Biomarker Research, 5:24. https://doi.org/10.1186/s40364-017-0104-9

Sun L., Li W., Lei F. and Li X., (2018). The regulatory role of microRNAs in angiogenesis-related diseases. Journal of Cellular and Molecular Medicine, 22: 4568- 4587. https://doi.org/10.1111/jcmm.13700

Vasudeva K. and Munshi A., (2020). miRNA dysregulation in ischaemic stroke: Focus on diagnosis, prognosis, therapeutic and protective biomarkers. European Journal of Neuroscience, 52: 3610- 627. https://doi.org/10.1111/ejn.14695

Wang Q., Wang F., Fu F., Liu J., Sun W. and Chen Y., (2021). Diagnostic and prognostic value of serum miR-9-5p and miR-128-3p levels in early-stage acute ischemic stroke. Clinics, 76:e2958. https://doi.org/10.6061/clinics/2021/e2958

Wei N., Xiao L., Xue R., Zhang D., Zhou J., Ren H., Guo S. and Xu J., (2016). MicroRNA-9 mediates the cell apoptosis by targeting Bcl2l11 in ischemic stroke. Molecular Neurobiology, 53: 6809-68017. https://doi.org/10.1007/s12035-015-9605-4

Wu J., Du K. and Lu X., (2015). Elevated expressions of serum miR-15a, miR-16, and miR-17-5p are associated with acute ischemic stroke. International Journal of Clinical and Experimental Medicine, 8: 21071-21079. https://ISSN:1940-5901/IJCEM0015102

Xiang W., Tian C., Lin J., Wu X., Pang G., Zhou L., Pan S. and Deng Z., (2017). Plasma let-7i and miR-15a expression are associated with the effect of recombinant tissue plasminogen activator treatment in acute ischemic stroke patients. Thrombosis Research, 158: 121-125. https://doi.org/10.1016/j.thromres.2017.09.004

Xin Q., Ji B., Cheng B., Wang C., Liu H., Chen X., Chen J. and Bai B., (2014). Endoplasmic reticulum stress in cerebral ischemia. Neurochemistry International, 68: 18- 27. https://doi.org/10.1016/j.neuint.2014.02.001

Yao S., Tang B., Li G., Fan R. and Cao F., (2016). miR-455 inhibits neuronal cell death by targeting TRAF3 in cerebral ischemic stroke. Neuropsychiatric Disease and Treatment. 12:3083-3092. doi: 10.2147/NDT.S121183

Yang X., Tang X., Sun P., Shi Y., Liu K., Hassan S., Stetler R., Chen J. and Yin K., (2017). MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke, 48: 1941-1947. https://doi.org/10.1161/STROKEAHA.117.017284

Zhou D., Sun L., Zhu J., Chen B., Li X. and Li W., (2020). MiR-9 promotes angiogenesis of endothelial progenitor cell to facilitate thrombi recanalization via targeting TRPM7 through PI3K/Akt/autophagy pathway. Journal of Cellular and Molecular Medicine, 24: 4624- 4632. https://doi.org/10.1111/jcmm.15124

Downloads

Published

2023-06-15