Can FoxO1 and Sox2 TRANSCRIPTION FACTORS HELP IN PREDICTING PREECLAMPSIA!

Authors

  • MOFIDA A. KESHK Department of Molecular Diagnostics & Therapeutics, Genetic Engineering & Biotechnology Research Institute (GEBRI), University of Sadat City, Elmenoufiya governorate
  • OLFAT G. SHAKER Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo

Abstract

Preeclampsia (PE) is a multisystem pregnancy disorder that affects about 10 million women worldwide. It is significantly associated with pregnancy-related fetal and maternal morbidity and mortality. PE has been linked to an increased risk of cardiovascular disease in women later in life too. Determining the exact etiology of PE has proved to be a hard task. So, it is critical to demonstrate how the gene regulatory mechanisms may help as therapeutic targets and diagnosis of PE. We assessed the expression level of FoxO1 and Sox2 transcription factors in sera of PE cases compared to control group. FoxO1 and Sox2 were estimated in all subjects using real time PCR technique, acting on mRNA of FoxO1 and Sox2 as a starting material in serum. Both FoxO1 and Sox2 showed decreased expression level in PE group than the control group. Each of them showed an inverse association with the increased preceding abortion numbers among the PE patients. Sensitivity and specificity of both FoxO1 and Sox2 for predicting PE were assessed by applying receiver operating characteristic (ROC) curve analysis; FoxO2 showed more sensitivity and specificity than Sox2 in predicting PE in women at risk. FoxO1 and Sox2 seem to play a critical role in PE pathogenesis. Our results suggest that FoxO1 and Sox2 might be promising predicting and/ or diagnostic molecular biomarkers for PE.

References

Abd-Elkader A., Ismail H., Shaker O., Lotfy M., Abdel-Mageed W. and Keshk M., (2020). Alterations in microRNA-15a and “γ-synuclein” expression levels among HCV-related hepatocellular carcinoma patients in Egypt. Research Journal of Applied Biotechnology, 6: 1-10. DOI: 10.21608/RJAB.2020.219593

Aelie R., Cho N., Kim Y. and Lee E., (2019). Predictive value of serum uric acid levels for adverse perinatal outcomes in preeclampsia. Medicine, 98: p e15462. DOI: 10.1097/MD.0000000000015462

Amro B., Aristondo M., Alsuwaidi Sh., Almaamari B., Hakim Z., Tahlak M., Wattiez A. and Koninckx P., (2022). New understanding of diagnosis, treatment and prevention of endometriosis. International Journal of Environmental Research and Public Health, 19: 6725. https://doi.org/10.3390/ijerph19116725

Brown A., Wieben M., Murdock S., Chang J., Dizon M., St Pierre M., Chavez-Valdez R., Dorsky R. and Fung C., (2021). Intrauterine growth restriction causes abnormal embryonic dentate gyrus neurogenesis in mouse offspring that leads to adult learning and memory deficits. eNeuro, 8. DOI: 10.1523/ENEURO.0062-21.2021

Chan Y., (2003a). Biostatistics102: Quantitative Data – Parametric & Non-parametric Tests. Singapore Med J.; 44: 391-396. https://pubmed.ncbi.nlm.nih.gov/14700417/

Chan Y., (2003b). Biostatistics 103: Qualitative Data–Tests of Independence. Singapore Med J.; 44: 498-503. https://pubmed.ncbi.nlm.nih.gov/15024452/

Chen Y., Ding H., Wei M., Zha W., Guan S., Liu N., Li Y., Tan Y., Wang Y. and Wu F., (2020). MSC-Secreted Exosomal H19 Promotes Trophoblast Cell Invasion and Migration by Downregulating let-7b and Upregulating FoxO1. Molecular Therapy Nucleic Acids, 19: 1237-1249. Doi: 10.1016/j.omtn.2019.11.031

Cui K., Zhu Y., Shi Y., Chen T., Wang H., Guo Y., Deng P., Liu H., Shao X. and Qin J., (2021). Establishment of trophoblast-like tissue model from human pluripotent stem cells in three-dimensional culture system. Advanced Science, 9: 2100031. https://doi.org/10.1002/advs.202100031

Florkowski C., (2008). Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clinical Biochemist Reviews, (Suppl 1): S83-87.

Hosaka T., Biggs W., Tieu D., Boyer A., Varki N., Cavenee W. and Arden K., (2004). Disruption of Forkhead transcription factor (FoxO) family members in mice reveals their functional diversification. Proceedings of the National Academy of Sciences U S A, 101: 2975-2980. DOI: 10.1073/pnas.0400093101

Huhn E., Hoffmann I., De Tejada B., Lange S., Sage K., Roberts Ch., Gravett M., Nagalla S. and Lapaire O., (2020). Maternal serum glycosylated fibronectin as a short-term predictor of preeclampsia: a prospective cohort study. BMC Pregnancy and Childbirth, 20: 128. https://doi.org/10.1186/s12884-020-2809-2

Johnson J. and Louis J., (2022). Does race or ethnicity play a role in the origin, pathophysiology, and outcomes of preeclampsia? An expert review of the literature. The American Journal of Obstetrics and Gynecology, 226: S876-S85. DOI: 10.1016/j.ajog.2020.07.038

Kajihara T., Brosens J. and Ishihara O., (2013). The role of FoxO1 in the decidual transformation of the endometrium and early pregnancy. Medical Molecular Morphology, 46: 61–68. DOI: 10.1007/s00795-013-0018-z

Kametas N., Nzelu D. and Nicolaides K., (2022). Chronic hypertension and superimposed preeclampsia: screening and diagnosis, American Journal of Obstetrics and Gynecology, 226: S1182-S1195. https://doi.org/10.1016/j.ajog.2020.11.029

Lien Y., Wang P., Lu X. and Simmons R., (2020). Altered transcription factor binding and gene bivalency in islets of intrauterine growth retarded rats. Cells, 9: 1435. https://doi.org/10.3390/cells9061435

Liu K., Lin B., Zhao M., Yang X., Chen M., Gao A., Que J. and Lan X., (2013). The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal, 25: 1264- 1271. DOI: 10.1016/j.cellsig.2013.02.013

Liu L., Bai J., Liu F., Xu Y., Zhao M., Zhao Ch. and Zhou Z., (2022). Cross-talking pathways of fork-head box O1 (FoxO1) are involved in the pathogenesis of Alzheimer's disease and Huntington's disease. Oxidative Medicine and Cellular Longevity, 7619255. DOI: 10.1155/2022/7619255

Lu H. and Huang H., (2011). FoxO1: a potential target for human diseases. Current Drug Targets,12: 1235- 1244. DOI:10.2174/138945011796150280

Lu J., Wang Z., Cao J., Chen Y. and Dong Y., (2018). A novel and compact review on the role of oxidative stress in female reproduction. Reproductive Biology Endocrinology, 16: 80. https://doi.org/10.1186/s12958-018-0391-5

Lu J., Chen Y., Wang Z., Cao J. and Dong Y., (2021). The role of the FoxO1/β2-AR/p-NF-κB p65 pathway in the development of endometrial stromal cells in pregnant mice under restraint stress. International Journal of Molecular Sciences, 22: 1478. DOI: 10.3390/ijms22031478

Mansour E., Eissa A., Nofal L., Kharboush I., Anwar W. and Sallam I., (2002). Incidence and factors leading to low birth weight in Egypt. International Pediatrics, 17: 223-230.

Müller-Deile J. and Schiffer M., (2014). Preeclampsia from a renal point of view: Insides into disease models, biomarkers and therapy. World Journal of Nephrology, 6:169-81. DOI: 10.5527/wjn.v3.i4.169

Opichka M., Rappelt M., Gutterman D., Grobe J. and McIntosh J., (2021). Vascular dysfunction in preeclampsia. Cells, 10: 3055. https://doi.org/10.3390/cells10113055

Ormsbee-Golden B., Wuebben E. and Rizzino A., (2013). Sox2 expression is regulated by a negative feedback loop in embryonic stem cells that involves AKT signaling and FoxO1. PLoS ONE, 8: e76345. DOI: 10.1371/journal.pone.0076345

Phipps E., Thadhani R., Benzing T. and Karumanchi S., (2019). Preeclampsia: pathogenesis, novel diagnostics and therapies [published correction appears in Nat. Rev. Nephrol. 2019 Jun; 15 (6):386]. Nature Reviews Nephrology, 15: 275-289. DOI:10.1038/s41581-019-0119-6

Rana S., Lemoine E., Granger J. and Karumanchi S., (2019). Preeclampsia: pathophysiology, challenges, and perspectives. Circulation Research, 124: 1094-1112. https://doi.org/10.1161/CIRCRESAHA.118.313276

Roberts J. and Escudero C., (2012). The placenta in preeclampsia. Pregnancy Hypertension, 2: 72-83. DOI: 10.1016/j.preghy.2012.01.001

Rodrigo R., González J. and Paoletto F., (2011). The role of oxidative stress in the pathophysiology of hypertension. Hypertension Research, 34: 431-440. https://doi.org/10.1038/hr.2010.264

Sánchez-Aranguren L., Prada C., Riaño- Medina C. and Lopez M., (2014). Endothelial dysfunction and preeclampsia: role of oxidative stress. Frontiers in Physiology, 5: 372. DOI:10.3389/fphys.2014.00372

Shaker O., Mahfouz H., Salama A. and Medhat E., (2020). Long non-coding HULC and miRNA-372 as diagnostic biomarkers in hepatocellular carcinoma. Reports of Biochemistry & Molecular Biology, 9: 230-240. Doi:10.29252/rbmb.9.2.230.

Sheridan R., Belludi C., Khoury J., Stanek J. and Handwerger S., (2015). FOXO1 expression in villous trophoblast of preeclampsia and fetal growth restriction placentas. Histology and Histopathology, 30: 213-222. Doi:10.14670/HH-0.3213.

Świstowska M., Gil-Kulik P., Krzyżan-owski A., Bielecki T., Czop M., Kwaśniewska A. and Kocki J., (2019). Potential effect of Sox2 on the cell cycle of Wharton's Jelly stem cells (WJSCs). Oxidative medicine and cellular longevity, 5084689. DOI: 10.1155/2019/5084689

Vishnyakova P., Volodina M., Tarasova N., Marey M., Tsvirkun D., Vavina O., Khodzhaeva Z., Kan N., Menon R., Vysokikh M. and Sukhikh G., (2016). Mitochondrial role in adaptive response to stress conditions in preeclampsia. Scientific Reports, 6: 32410. DOI: 10.1038/srep32410

Wang Z., Oron E., Nelson B., Razis S. and Ivanova N., (2012). Distinct Lineage Specification Roles for NANOG, OCT4, and SoX2 in Human Embryonic Stem Cells. Cell Stem Cell, 10, Issue 4: 440-54. DOI: 10.1016/j.stem.2012.02.016

Weber M., Göhner C., San Martin S., Vattai A., Hutter S., Parraga M., Jeschke U., Schleussner E., Markert U. and Fitzgerald J., (2016). Unique trophoblast stem cell- and pluripotency marker staining patterns depending on gestational age and placenta-associated pregnancy complications. Cell Adhesion & Migration, 10: 56- 65. Doi: 10.1080/19336918.2016.1142035

Xing Y., Li A., Yang Y., Li X., Zhang L. and Guo H., (2018). The regulation of FoxO1 and its role in disease progression. Life Sciences, 193: 124-131. DOI: 10.1016/j.lfs.2017.11.030

Xu R. and Wang Z., (2021). Involvement of transcription factor FoxO1 in the pathogenesis of polycystic ovary syndrome. Frontiers in Physiology, 12: 649295. DOI: 10.3389/fphys.2021.649295

Zhang T., Kim D., Xiao X., Lee S., Gong Z., Muzumdar R., Calabuig- Navarro V., Yamauchi J., Harashima H., Wang R., Bottino R., Alvarez-Perez J., Garcia-Ocaña A., Gittes G. and Dong H., (2016). FoxO1 plays an important role in regulating β-cell compensation for insulin resistance in male mice. Endocrinology, 157:1055-1070.

Downloads

Published

2023-06-14

Most read articles by the same author(s)