GENETIC DIVERSITY OF SELECTED FLAX GENOTYPES (Linu- musitatissimum L.) BASED ON SCOT, ISSR AND RAMP MARKERS

Authors

  • MARWA H. A. OSMAN Nucleic Acid and Protein ChemistryDepartment, Agricultural Genetic Engineering Research Insti- tute (AGERI), Agricultural Research Center (ARC), Giza
  • M. A. BADAWI Genome mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agri- cultural Research Center (ARC), Giza -12619
  • E. M. ZAYED Cell Study Research Department (CSRD), Field Crops Research Institute, Agriculture Research Center (ARC), Giza 12619
  • REEM M. ABD EL-MAKSOUD Nucleic Acid and Protein ChemistryDepartment, Agricultural Genetic Engineering Research Insti- tute (AGERI), Agricultural Research Center (ARC), Giza
  • K.H. RADWAN Microbial Molecular BiologyDepartment, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza

Abstract

Thirteen Start Codon Targeted (SCoT), thirteen inter simple sequence repeat (ISSR) primers and eleven random amplified microsatellite polymorphism (RAMP) primer combinations were used to assess the genetic diversity among twelve Flax (Linum usitatissimum L.) genotypes that are currently active in flax breeding programs in Egypt. They successfully produced a total of 209, 177 and 143 reproducible bands, with a polymorphism percentage of 80.38%, 64.40% and 60.83%, respectively. The highest polymorphism was obtained by SCoT marker with a polymorphic information content (PIC) value of (0.23) and marker index (MI) of (2.96) compared with ISSR markers (0.20 and 1.74, respectively) and RAMP (0.16 and 1.06, respectively). Also, data showed higher SCoT values of observed alleles (Na) 1.82, the number of effective alleles (Ne) 1.51 and the effective multiplex ratio (EMR) 12.9 compared with ISSRs (1.65, 1.41 and 8.7) and RAMP (1.63, 1.34 and 6.00, respectively). On the other hand, Shanon index (I) produced by ISSR marker (0.35) showed higher variability than SCoT (0.25) and RAMP (0.30). However, dendrograms derived from SCoT, ISSR and RAMP marker data separated the 12 flax genotypes into two main clusters. Thus, SCoT marker can be used as an effective complementary method besides ISSR and RAMP for molecular characterization of flax as well as for the determination of genetic relationships between flax cultivars.

Author Biography

  • K.H. RADWAN, Microbial Molecular BiologyDepartment, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza

    Corresponding author: Microbial Molecular Biology Department, AGERI, ARC. Giza -12619 Egypt. Tel. 0020235727831

References

Agarwal M., Shrivastava N. and PadhH., (2008). Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep., 27 (4): 617-631.

Agarwal A., Gupta V., Ul Haq S., Jatav P. K., Kothari S. L. and Kachhwaha S., (2019). Assessment of genetic diversity in 29 rose germplasms using SCoT marker.J. of King Saud Univ. Science.,31 (4): 780-788. https://doi.org/10.1016/j.jksus.2018.04.022

Ahmed M. Z. S., Masoud I. M. and Zedan S. Z. A., (2018). Genetic diversity and relationship among nine cultivated flax genotypes (Linum usitatissimum L.) based on SCoT markers. Middle East J. of Appl. Sci., 8 (4): 1480-1490.

Ahmed M. Z. S., Masoud I. M. and Zedan S. Z. A., (2019). Molecular characterization and genetic relationships of cultivated flax (Linum usitatissimum L.) genotypes using ISSR markers. Mid. East J. of Agr., 08 (3): 898-908.

Alikhani L., Rahmani M. S., Shabanian N., Badakhshan H. and Khadivi-Khub A., (2014). Genetic variability and structure of Quercus brantiiassessed by ISSR, IRAP and SCoT markers.Gene., (552):176-183. doi: https://doi.org/10.1016/j.gene.2014.09.034

Bekele A. and Bekele E., (2014). Fulllength review article overview: Morphological and molecular markers role in crop improvement programs. International J. of Current Research in Life Sciences, 3(2): 035-042.

Bhattacharyya P., Kumaria S., Kumar S. and Tandon P., (2013). Start codon targeted (SCoT) marker reveals genetic diversity of Dendrobium nobileLindl., an endangered medicinal orchid species. Gene, 529(1):21-26.

Botstein D., White R. L., Skolnick M. and Davis R. W., (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am. J. Hum. Genet., 32 (3): 314-331.

Chegini M. N., Lahiji H. A., Malekroudi M. R., Golfazani M. M. and Seighalani R., (2016). Assessment of morphological and molecular variation in local olive (Olea europaea L.) in the Northern part of Iran.Acta AgriculturaeSlovenica, 107(2): 397-408.

Collard B. C. Y. and Mackill D. J., (2009). Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep., 27(1): 86-93.

Elfaramawy A., Deif H. and El-Bakatoushi R., (2016). Genetic variation among fragmented populations of Atriplex halimus L. using start codon targeted (SCoT) and ITS1-5.8S-ITS2 region markers. Am. J. of Mol. Biol., 6: 101-115. http://dx.doi.org/10.4236/ajmb.2016.62011

El Sayed A. A., Ezzat S. M., Mostafa S. H., Zedan S. Z., Abdel-Sattar E. and El Tanbouly N., (2018). Inter simple sequence repeat analysis of genetic diversity and relationship in four Egyptian flaxseed genotypes. Pharm. Res., (10) 2:166-172.

Gorji A. M., Poczai P., Polgar Z. and Taller J., (2011). Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am. J. Potato Res., 88: 226-237.

Guo D. L., Zhang J. Y. and Liu C. H., (2012). Genetic diversity in some grape varieties revealed by SCoT analyses. Mol. Biol. Rep., 39(5): 5307-5313.

Hartl D. L. and Clark A. G., (1997). Principles of Population Genetics. Sinauer Associates, Inc. blishers Sunderland, Massachusetts.

Heidari E. F., Rahimmalek M., Mohammadi S. and Ehtemam M. H., (2016). Genetic structure and diversity of ajowan (Trachyspermumammi) populations based on molecular morphological markers and volatile oil content. Ind. Crops and Prod., 92:186-196.

Hoque A., Fiedler J. D. and Rahman M., (2020). Genetic diversity analysis of a flax (Linum usitatissimum L.) global collection. BMC Gen.,21:557. doi: https://doi.org/10.1186/s12864-020-06922-2

Ismail N. Z.,Arsad H., Samian M. R., Ab Majid A. H. and Hamdan M. R., (2016). Evaluation of genetic diversity of Clinacanthus nutans (Acanthaceaea) using RAPD, ISSR and RAMP markers. Physiol. and Mol. Biol. of Plants, 22(4):523-534.

Kumari A., Paul S. and Sharma V., (2018). Genetic diversity analysis using RAPD and ISSR markers revealed discrete genetic makeup in relation to fiber and oil content in Linum usitatissimum L. genotypes. Nucleus, 61(1):45-53.

Liu K. and Muse S. V., (2005). Power Marker: An integrated analysis environment for genetic marker anal- ysis. Bioinf., 21(9):2128-2129. http://doi.org/10.1093/bioinformatics/bti282

Liu X., Du J., Khan M., Cheng J., Wei C., Mei Z., Chen H., HeT. and Fu J., (2020). Analysis of genetic diversity and similarities between different Lycium varieties based on ISSR analysis and RAMP-PCR markers. World Acad. of Sci. J., 2(2):83-90. https://doi.org/10.3892/wasj.2020.39

Mantel N., (1967). The detection of disease clustering and a generalized regression approach.Can. Res., 27:209-220.

Mao R., Xia P., Liu J., Li X., Han R., Liu F., Zhao H. and Liang Z., (2018). Genetic diversity and population structure assessment of Chinese Senna obtusifolia L. by molecular markers and morphological traits of seed. Acta Physiologiae Plantarum, 40:1-14.

Mhiret W. N. and Heslop-Harrison J. S., (2018). Biodiversity in Ethiopian linseed (Linum usitatissimum L.): molecular characterization of landraces and some wild species. Genet. Res. Crop Evol., 65(6): 1603-1614.

Mohamed A. A., Nagaty M. A., El-Baghdady M. M. S. and Radwan K.H., (2017). Morphological and molecular characterization of some olive in El-Arish. JBAAR, 3(4):237-251.

Morgante M.,Rafalsky A., Biddle P., Tingey S. and Olivieri A. M., (1994). Genetic mapping and variability of seven soybean simple sequence repeat loci.Genome, 37(5):763-769.

Nei M. and Li W. H., (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76(10):5269-5273.

Pali V. and Mehta N., (2016). Genetic diversity assessment of flax (Linum usitatissimum L.) germplasm using molecular and morphological markers. Elect. J. of Plant Breed., 7(4):986-995.

Powell W., Morgante M., Andre C., Hanafey M., Vogel J., Tingey S. and Rafalski A., (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed., 2:225-238.

Pu Z.E., Hou Y. C., Xu X. X., Yan Z. H., Wei Y. M., Lan X. J. and Zheng, Y. L., (2009). Genetic diversity among barley populations from west China based on RAMP and RAPD markers. Asian J. Plant Sci., 8(2):111-119.

Rahman M. A., Thomson M. J., Shah-E-Alam M., de Ocampo M., Egdane J. and Ismail A. M., (2016). Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. Ann. Bot., 117(6):1083-1097.

Rai V. P., Kumar R., Kumar S., Rai A., Kumar S., Singh S. P., Rai A. B. and Paliwal R., (2013). Genetic diversity inCapsicumgermplasm based on microsatellite and random amplified microsatellite polymorphism markers. Physiol. and Mol. Biol. of Plants., 19(4):575-586.

Rajwade A. V., Arora R. S., Kadoo N. T., Harsulkar A. M., Ghorpad P. B. and Gupta V. S., (2010). Relatedness of Indian flax genotypes (Linum usitatissimum L.): An Inter-Simple Sequence Repeat (ISSR) Primer Assay. Mol. Biot., (45):161-170. doi:https://doi.org/10.1007/s12033-010-9256-7

Rathore N. S., Rai M. K., Phulwaria M., Rathore N. and Shekhawat N. S., (2014). Genetic stability in micropropagated Cleome gynandra revealed by SCoT analysis. Acta Physiol. Plant., 36:555-559.

Rhouma-Chatti S., Baraket G., Dakhlaoui-Dkhil S., Zehdi-Azouzi S. and Trifi M., (2011). Molecular research on the genetic diversity of Tunisian date palm (Phoenix dactylifera L.) using the random amplified microsatellite polymorphism (RAM-PO) and amplified fragment length polymorphism (AFLP) methods. Afr. J. of Biotech., 10(51):10352-10365.

Saleh B., (2015). Phylogenetic assessment of Arthrocnemummacrostachyum (Chenopodiaceae) genotypes using RAMP markers. Pol. Bot. J., 60 (2): 293-299.

Shannon C. E., (1949). Communication theory of secrecy systems. Bell System Technical J., 28: 656-715.

Singh S. K., Chhajer S., Pathak R., Bhatt R. K. and Kalia R. K., (2017). Genetic diversity of Indian jujube cultivars using SCoT, ISSR, and rDNA markers. Tree Genetics and Genomes, 13:12. doi: https://doi.org/10.1007/s11295-016-1092-x

Sonah H., Deshmukh R. K., Singh V. P., Gupta D. K., Singh N. K. and Sharma T. R., (2011). Genomic resources in horticultural crops: status, utility and challenges.Biotech. Adv., 29(2):199-209.

doi:https://doi.org/10.1016/j.biotechadv.2010.11.002

Yadava D. K., Vasudev S., Singh N., Mohapatra T. and Prabhu K. V., (2012). Breeding major oil crops: present status and future research needs. Ch. 2. In: Gupta S. K. (ed.). Technological Innovations in Major World Oil Crops Breed. Breeding. Springer Sci., 1:17-51 doi:10.1007/978-1-4614-0356-2.

Yeh F. C., Yang R. C., Boyle T. B. J., Ye Z. H. and Mao J. X., (1997). POPGENE, the user-friendly shareware for population genetic analysis. Mol. Biol. and Biotechnology Centre, University of Alberta, Alberta.

Zhao X., Zou G., Zhao J., Hu L., Lan, Y. and He J., (2020). Genetic relationships and diversity among populations of Paris polyphyllaassessed using SCoT and SRAP markers. Physiol. Mol. Biol. Plants, 26(6):1281-1293. doi:https://doi.org/10.1007/s12298-020-00808-z

Wiesnerová D. and Wiesner I., (2004). ISSR-based clustering of cultivated flax germplasm is statistically correlated to thousand seed mass. Mol. Biotech., 26: 207-214.

Downloads

Published

2021-10-11

Issue

Section

Articles