MOLECULAR INSIGHT INTO WADI HAGUL RARE DIVERSITY:Echinops spinosus AND fagonia molis, PLANT SPECIES
Abstract
Genetic studies have been performed to distinguish two plants inhabiting a natural valley renowned as Wadi Hagul of Egypt throwing karyotype and DNA barcode analysis. The two plants were morphologically identified as Echinops spinosus and Fagonia mollis. As a result, the karyotype approach exhibited a significant variant among the certain chromosomal features involving chromosomal number, area of chromosomes, chromosomal length, arm ratio, the position of centromeres, and centromeric index. The chromosomal number of both plants was 2n=18, while the DNA barcode identified their species as E. spinosus of the family Asteraceae and F. mollis of the family Zygophyllaceae based on rbcL phylogenetic analysis. Results indicated that, F. mollis evolutionary tree was rooted into two clads, belonging to family Zygophyllaceae and supported to Fagonia latistipulata (bootstrap support of 93%). Indeed, analysis of rbcL sequence will permit to evaluate the taxonomy and systematic of different plants recovered with a good performance in clarifying genetic diversity within and between populations in the studied plants. In particular, Echinops spinosus and Fagonia mollis showed a minor divergent from the common species, therefore an urgent survey for these genotypes and their conservation is required.
References
Abdelaal M. (2017). Current statue of the floristic composition in Wadi Hagul, Northwest Suez Gulf, Egypt. Rend. Fis. Acc. Lincei , 28: 81-92.
Albers F., J. Van der Walt J. and Geraniace (2007). The families and genera of vascular plants. Springer Berlin Heid.157-167.
Ali Z., Abulfaraj A., Idris A., Ali S., Tashkandi M. and Mahfouz M. (2015). CRISPR/Cas9-mediated viral interference in plants. Genome Biol., 16:238.
Badr A. and Sharawy S. (2007). Karyotype analysis and systematic relationships in the Egyptian Astragalus L. (Fabaceae). Int. J. Bot.,, 3: 147-159.
Baquar S. (1970). Natural tetraploidy in the genus Fagonia L. Curr. Sci., 36:172.
Boulos L. (2009). Flora of Egypt Checklist-Revised Annotated Edition, Al Hadara Publishing, Cairo, Egypt, pp. 221.
Chase M. W., Salamin N., Wilkinson M., and Dunwell J. M. (2005). Land plants and DNA barcodes: short-term and long-term goals. Philos. Trans. R. Soc. Lond. B Biol. Sci., 360: 1889-1895.
El Atroush H., Magdi M.. and Werner O. (2015). DNA Barcoding of two endangered medicinal plants from Abou Galoom protectorate. Life Sci. J., 12: 101-109.
EL Hadidy M. N. (1966). The genus Fagonia L. in Egypt. Candollea, 21: 13-54.
El-Sakaty S. I. A., Magdi M., El-Atroush H., Mohamed M. M., Abou-Salama U. (2014). DNA barcoding of three Bryaceae –Musci. Egypt. J. Bot., special issue for the fourth international conference of Botany and Microbiology Sciences, 53-63
Elsherbeny Esraa A. (2016). DNA barcoding of some medicinal plants, family Labiatae. Egypt. J. Exp. Biol. (Bot.)., 12: 175-180.
Fukui K. and Kakeda K. (1994). Dynamic changes in the morphology of barley chromosomes during the mitotic metaphase stage. Jap. J. Gen., 69:545-554.
Hassel K., Segreto R., and Ekrem T. (2013). Restricted variation in plant barcoding markers limits identification in closely related bryophyte species. Mol. Ecol. Res., 13: 1047-1057.
Ismael S., Georgy A., Oriane H. and Teresa G. (2009). Molecular systematics of Echinops L. (Asteraceae, Cynareae): A phylogeny based on ITS and trnL-trnF sequences with emphasis on sectional delimitation. Taxon., 59:698-708.
Kadereit J. W. and Jeffrey C. (2007). Flowering plants. Eudicots. In: “The Families and Genera of Vascular Plants. (Kubitzki K. Ed.)”. Springer - Verlag, Berlin, Heidelberg, pp. 61-128.
Kress W. and Erickson D.. (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnHpsbA spacer region. PLoS One., 2: e508.
Kucera J., Martonfiova L., Stubnova E. and Slovak M. (2016). Picris. IAPT/IOPB chromosome data 21. Taxon., 65: 675.
Levin D. (2002). The role of chromosomal changes in plant evolution. Oxford Univ. Press.
Newmaster S., Fazekas A. and Ragupathy S. (2006). DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach. Canad. J. of Bot., 84: 335-441.
Peruzzi L. and Altınordu F. (2014). A proposal for a multivariate quantitative approach to infer karyological relationships among taxa. Comp. Cytogen., 8: 337-349.
Reeves A. (2001). Micro Measure: a new computer program for the collection and analysis of cytogenetic data. Genome., 44:439-443.
Roalson E., Mccubbin A. and Whitkus G. (2007). Chromosome evolution in Cyperales. Ran. San. Ana. Bot. Gard., 23: 62-71.
Roma-Marzio F., Astuti G. and Peruzzi L. (2015). Taxonomy, typification and karyology of Crepislacera (Asteraceae). Phyto. 208:45-54.
Sharma A., and Sen S. (2002). Chromosome botany. Enfield (NH): Science Publishers.
Stace C. (2000). Cytology and cytogenetics as a fundamental resource for the 20th and 21st centuries. Taxon., 49: 451-477.
Täckholm V. (1974). Student Flora of Egypt, 2nd edition. University Publishing, pp. 888.
White T. J., Bruns T., Lee S., Taylor J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In: “PCR Protocols: a guide to methods and applications. (Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., eds)”. Academic Press, New York, USA, pp. 315-322.
Xiwen L., Yang Y., Robert J., Maurizio R., Yitao W and Shilin C. (2015). Plant DNA barcoding: from gene to genome. Biol. Rev., 90: 157-166.
Zahran M. A. and Willis A. J. (2009). The Vegetation of Egypt. 2nd ed. Springer, Netherland, pp. 437.
Zaidi S. (2003). Effects of electromagnetic fields (created by high tension lines) on the indigenous floral biodiversity in the vicinity of Karachi- I: Studies on PMC meiosis, meiotic products and pollen fertility. Pakistan J. Bot., 35: 743-755.