ISOLATION, TOXICITY AND MOLECULAR CHARACTERIZA-TION OF NATIVE Bacillus thuringiensis ISOLATES FROM EGYPTIAN SOIL

Authors

  • AZZA MAKHLOUF Genetics Department, Faculty of Agriculture, Alexandria University, Egypt
  • AMIRA A. EL KEMANY Genetics Department, Faculty of Agriculture, Alexandria University, Egypt
  • A. S. RIAD Genetics Department, Faculty of Agriculture, Alexandria University, Egypt
  • Y. A. ABOU-YOUSSEF Genetics Department, Faculty of Agriculture, Alexandria University, Egypt

Abstract

Thirty three local soil samples were collected from Westward till Sewa Oasis in Egypt to search novel isolates of Bacillus thuringiensis (Bt) and evaluate their toxic potentiality to overcome the serious problem of evolved resistance by insects to the pesticidal activity. The first instars larvae of cotton leaf worm (Spodoptera littoralis) were used to test their toxic potentiality in the presence of the two standard strains kurstaki (K) and neoleonensis H24a (N). The results showed that three isolates from Alexandria (AL3, AL7 and AL11) and two isolates from Kafr - el-Dawar (KD2 and KD3) were presumptively confirmed as Bt. by morphological and microscopic characters. The treated larvae with Insecticidal crystal protein (ICP) exhibited mortality percentage around 50% for all isolates except AL3 isolate. The vegetative insecticidal proteins (VIPs) of KD3, KD2 and AL11 isolates revealed mortality percentages more than 75%. While, AL3 and AL7 isolates showed differential toxicity. Crystal proteins analysis by SDS-PAGE showed KD2, KD3 and AL11 isolates gave similar profiles as those of "K" strain which was characterized with 135 kDa and 70 kDa bands. AL3 isolate failed to show any noticeable bands. According to their plasmids patterns, 4 kb was shown in all isolates and the reference strains except AL3 isolate. Cry1, Vip1 and Vip2 genes of the isolates was detected by polymerase chain reaction (PCR). The results indicated that one band with 550bp in size was present in all isolates except the AL3 isolate. Vip1 primer succeeds to amplify a band 400 bp in size in all isolates and “K" strain. Vip2 primer failed to react with any genome of the studied isolates or reference strains. This study suggested that KD2, KD3 and AL11 isolates may lead to be identified as potential strains of Bt. for their use in the development of bioinsecticide to control insect pests in Egypt.

References

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.

Attallah, A. G., H. F. A. EL-Shaer and S. Kh. Abd-El-Aal (2014). 16S rRNA characterization of a Bacillus isolates from Egyptian soil and its plasmid profile. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5: 1590.

Baker, F. J. (1962). Handbook Of Bacteriological Technique. Butterworths, London .p. 639.

Bravo, A., S. Likitvivatanavong, S. Gill and M. Sober′on (2011). Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol., 41: 423-424.

Bravo, A., S. Sarabia, L. Lopez, H. Ontiveros, C. Abarca, A. Ortiz, M. Ortiz, L. Lina, F. J. Villalbos, G. Pena, M. E. Nunez-Valdez, M. Soberon and R. Quintero (1998). Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. App. Environ. Microbiol., 64: 4965-4972.

Ceron, J., A. Orti´z, R. Quintero, L. Guereca and A. Bravo (1995). Specific pcr primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection. App. Environ. Microbiol., 61: 3826-3831

Chattopadhyay, A., N. B. Bhatnagar and R. Bhatnagar (2004). Bacterial insecticidal toxins. Crit. Rev. Microbiol., 30: 33-54.

Chenot, A. B. and K. F. Raffa (1995). Effect of parasitoid strains and host instaron the interaction of Bacillus thuriengensis subsp. kurstaki with the gypsy mouth (Lepidoptera: Lymantriidae) larvae parasitoid Cotesia melanoscela (Hymenoptera: braconidae ). Environ. Entimol., 27: 137-147.

Colline, C. H. (1964). Microbiological methods. London, Butterworths. pp. 321.

Costas, M. (1992). Classification, identification and typing of bacteria by the analysis of their One-dimensional polyacrylamide gel electrophoresis protein patterns. In Advances in Electrophoresis, 5: 351-408. Edited by Chambrach A, Dunn M. J., Radola B. J. p. 351-408. New York⁄Weinheim⁄Cambridge: VCH Publishers.

Doss, V. A., K. A. Kumar, R. Jayakumar and V. Sekar (2002). Cloning and expression of the vegetative insecticidal protein (vip 3V) gene of Bacillus thuringiensis in Escherichia coli. Protein Expression Purif., 26: 82-88.

Estruch, J. J., R. G. W. Warren, M. A. Mullins, G. J. Nye, J. A. Craig, M. G. Koziel (1996). Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. PNAS, 93: 5389-5394.

Fakruddin, M. D., N. Sarker, M. M. Ahmed and R. Noor (2012). Protein Profiling of Bacillus thuringiensis isolated from Agroforest Soil in Bangladesh. J. Mol. Biol. Biotechnol., 20: 139-145.

Fisher, R. E. (1935). Statistical methods for research workers. Oliver and Edinbargh Ed.

Forbes, C. (1984). Microcomputer program for mutation studies using the Fisher test or the binomial approximation. Mutation Res., 141: 205-210.

Gonzazel, J. M., H. T. Dulmage and B. C. Carlton (1984). Correlation between specific plasmid and δ - endotoxin production in Bt. Plasmid, 5: 351-365.

Kado, C. and S. T. Liu (1981). Rapid procedure for detection and isolation of large and small plasmids. J. Bacteriology, 145: 1365-1373.

Kalfon, A. R. and H. De Barjac (1985). Screening of the insecticidal activity of Bacillus thuringiensis strains against the Egyptian leafworm Spodoptera littoralis. Entomophaga, 30: 177-186.

Kamel, A. S., M. F. A. Aziz and N. M. El-Barky (2010). Biochemical effects of three commercial formulations of Bacillus thuringiensis (Agerin, Dipel 2X and Dipel DF) on Spodoptera littoralis larvae. Egypt. Acad. J. Biology Sci., 3: 21-29.

Kashyap, S. and D. V. Amla (2007). Characterization of Bacillus thuringiensis kurstaki strains by toxicity, plasmid profiles and numerical analysis of their cryIA genes. Afr. J. Biotechnol., 6: 1821-1827.

Keshavarzi, M. (2008). Isolation, Identification and Differentiation of local B. thuringiensis strains. J. Agric. Sci. Technol., 10: 493-499.

Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of the head bacteriophage T4. Nature, 277: 680- 685.

Lee, I. H., Y. H. Je, J. H. Chang, J. Y. Roh, H. W. Oh, S. G. Lee, S. C. Shin and K. S. Boo (2001). Isolation and characterization of a Bacillus thuringiensis ssp. kurstaki strain toxic to Spodoptera exigua and Culex pipiens. Current Microbilogy, 43: 284-287.

Liu, Y. B., B. E. Tabashnik, B. E. Meyer and N. Crickmore (2001). Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth. Appl. Environ Microbiol 67: 3216-3219.

Martinez, C., J. E. Ibarra and P. Caballero (2005). Association analysis between serotype, Cry gene content, and toxicity to Helicoverpa armigera larvae among Bacillus thuringiensis isolates native to Spain. J. Inverteb. Pathol., 90: 91-97.

Mesrati, L. A., S. Tounsi and S. Jaoua (2005). Characterization of a novel Vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. FEMS Microbiology Letters, 244: 353-358.

Osman, G. (2010). Detection, cloning and bioinformatics analysis of Vip1/Vip2 genes from local strains of Bacillus thuringiensis. Afr. J. Biotechnol., 11: 11678-11685.

Raymond, B., P. R. Johnston, C. Nielsen-LeRoux, D. Lereclus and N. Crickmore (2010). Bacillus thuringiensis: an important pathogen? Trends Microbiol., 18: 189-194.

Sanchis, V. and D. Bourguet (2008). Bacillus thuringiensis: applications in agriculture and insect resistance management. A review. Agronomy and Sustaiable Development, 28: 11-20.

Sayyed, A. H., B. Raymond, M. S. Ibiza-Palacios, B. Escriche and D. J. Wright (2004) .Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Appl. Environ. Microbiol., 70: 7010-7017.

Selvapandiyan, A., N. Arora, R. Rajagopal, S. K. Jalali, T. Venkatesan, S. P. Singh and R. K. Bhatnagar (2001). Toxicity analysis of N- and C-Terminus-Deleted vegetative insecticidal protein from Bacillus thuringiensis. Appl. Environ. Microbiol., 67: 5855-5858.

Shorey, H. H. and R. L. Hale (1965). Mass rearing of the larvae of nine Nictuid species on a simple artificial medium. J. Econ. Entomal., 58: 522-524.

Swiecicka, I. and P. De Vos (2003). Properties of Bacillus thuringiensis Isolates from Banl Voles. J. Appl. Microbiol., 94: 60-64.

Thaphan, P., S. Keawsompong and J. Chanpaisaeng (2008). Isolation, toxicity and detection of Cry gene in Bacillus thuringiensis isolates in Krabi province, Thailand. Songklanakarin J. Sci. Technol., 30: 597-601.

Vilas-Bôas, G. T. and M. V. F. Lemos (2004). Diversity of Cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil. Can. J. Microbiol., 50: 605-613.

Vilas-Bôas, G. T., A. P. S. Peruca and Arantes Omn (2007). Biology and taxonomy of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis. Can. J. Microbiol., 53: 673-687.

Warren, G. W. (1997). Vegetative insecticidal proteins: Novel proteins for control of corn pests. In: Carozzi N., Koziel M. (eds), Advances in insect control: The role of transgenic plants. London, UK: Taylor and Francis Ltd. p. 109-121.

Zhang, J., F. Song, Y. Zuo, L. Dai and D. Huang (2000). Identification of Crytype genes of 31 Bacillus thuringiensis isolates and analysis of their expression product. Wei Sheng Wu Xue Bao., 40: 372-378.

Zweig, G. (1963). Analytical methods for pesticidies, plant growth regulators and food additive. Academic press, New York and London, Vol. L. 626.

Downloads

Published

2016-01-23

Issue

Section

Articles