To evaluate the resistance of some barley genotypes for net blotch disease and grain yield and its related traits, twenty genotypes (12 local varieties and 8 exotic lines) of barley were used. Expression of severity to foliar infection varied between the evaluated genotypes, Giza 117 and Giza 2000 appeared the highest infection response, Giza 123, Giza 124, Giza 126 and Giza 131 were moderately susceptible, while the other genotypes ranged between resistant to moderately resistant. Line 81 and Line 91 proved to be most resistant genotypes for net blotch. Moreover, Giza 133 and line 91 showed superiority in grain yield values over all the tested barley genotypes and high resistance reaction for net blotch disease. Genetic variability and relationships among the used barley genotypes were evaluated by using five RAPD primers, three SCoT primers and eight SSR primer pairs. A high degree of polymorphism was detected with the three types of DNA markers which recorded 70.83, 77.42 and 72.5%, respectively. Alleles number ranged from 8 to 15, 9 to 12 and 2 to 8 per primer, with averages of 9.6, 10.33 and 5 per RAPD, SCoT and SSR primers, respectively. The highest percentage of genetic similarity as revealed by combined RAPD, SCoT and SSR data was found between line 81 and line 91 (90.7%), while the lowest similarity percentage was detected between Giza 124 and line 46 (65.2%). Giza 134 and Line 9 genotypes were resistant for net blotch disease while they gave positive genotype-specific markers with RAPD and SCoT analyses. Only Giza 123 genotype gave a positive genotype-specific marker using SSR analysis. Therefore, these genotype-specific markers could be considered as a molecular marker for net blotch disease response under similar conditions.

Full Text:



Abu Qamar, M., Z. H. Liu, J. D. Faris, S. Chao, M. C. Edwards, Z. Lai, J. D. Franckowiak and T. L. Friesen (2008). A region of barley chromosome 6H harbors multiple major genes associated with net type net blotch resistance. Theor. Appl. Genet., 117: 1261-1270.

Adawy, S., M. Saker, W. Hagag and H. El Itriby (2008). AFLP-based molecular analysis of Egyptian barley lines and landraces differing in their resistance and susceptibility to leaf rust and net blotch diseases. J. of Landbauforschung, 58: 125- 134.

Adawy, S. S., A. A. Diab, A. I. Sayed, S. D. Ibrahim, S. I. El-Morsy and M. M. Saker (2013). Construction of genetic linkage map and QTL analysis of net blotch resistance in barley. IJABR, 4: 348-363.

Afiah, S. A. N. and A. M. Abdel-Hakim (1999). Heterosis, combining ability, correlations and path coefficient analysis in barley (Hordeum vulgare L.) under desert conditions of Egypt. Proc. 1st Pl. Breed. Conf., Cairo Univ., Special Issue of Egypt. J. Pl. Breed., 3: 53-66.

Afiah, S. A. N., H. A. Sallam and S. A. H. Khattab (1999). Evaluation of divergent barley (Hordeum vulgare L.) genotypes under certain environments. Ann. Agric. Sci., Moshtohor, 37: 973-988.

Agrios, G. N. (2005). Plant pathology. 5th Edition. Elsevier Academic Press, UK. Amirmoradi, B., R. Talebi and E. Karami (2012). Comparison of genetic variation and differentiation among annual Cicer species using start codon targeted (SCoT) polymorphism, DAMD-PCR, and ISSR markers. Plant Syst. Evol., 298: 1679-1688.

Ciulca, A., S. Ciulca, E. Madosă, S. Mihacea and C. Petolescu (2010). RAPD analysis of genetic variation among some winter barley cultivar. Romanian Biotechnol. Lett., 15: 19-24.

Collard, B. C. Y. and D. J. Mackilla (2009). Start codon targeted (SCoT) polymorphism: simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep., 27: 86-93.

Diab, A. A., M. A. Atia, E. H. Hussein, H. A. Hussein and S. S. Adawy (2013). A multidisciplinary approach for dissecting qtl controlling high-yield and drought tolerance- related traits in durum wheat. Int. J. of Agrci. Sci. and Res., 3: 99-116.

El-Gayar, M. A., A. M. Esmail, A. M. Hegazi and M. T. Hegab (1984). Estimates of genetic and environmental variability in barley (Hordeum vulgare L.) under Nile valley and Sinai conditions. Proc. 9th Int. Cong. for Statistics, Computer Science, Social and Demographic Research, p: 485-497.

Fernández, M. E., A. M. Figueiras and C. Benito (2002). The use of ISSR and RAPD markers for detecting DNA polymorphism, genotype identification and genetic diversity among barley cultivars with known origin. Theor. Appl. Genet., 104: 845-851.

Fisher, P. J., R. C. Gardner and T. E. Richardson (1996). Single locus microsatellites isolated using 5' anchored PCR. Nuc. Acids Res., 24: 4369-4371.

Goldstein, D. B. and D. D. Pollock (1997). Launching microsatellites: a review of mutation processes and methods of phylogenetic inference. J. Hered., 88: 335-342.

Gorji, A. M., P. Poczai, Z. Polgar and J. Taller (2011). Efficiency of arbitrarily amplified dominant markers (SCoT, ISSR and RAPD) for diagnostic fingerprinting in tetraploid potato. Am. J. Pot. Res., 88: 226- 237.

Graner, A., B. Foroughi and A. Tekauz (1996). RFLP mapping in barley of a dominant gene conferring resistance to scald (Rhynchosporium secalis). Theor. Appl. Genet., 93: 421-425.

Haley, S., P. Miklas, J. Stavely and D. Kelly (1993). Identification of RAPD markers linked to a major rust resistance gene block in common bean. Theor. Appl. Genet., 86: 505-512.

Hartleb, H., U. Meyer and C. O. Lehmann (1990). Resistance behaviour of common barley to different isolates of Drechslera teres (Sacc.) Shoem. Archiv für Phytopathologie und Pflanzenschutz, 26: 257-264.

Hemleben, V., T. Schmidt, R. A. Torres- Ruiz and U. Zentgraf (2000). Molecular cell biology: role of repetitive DNA in nuclear architecture and chromosome structure. Progress in Botany, 61: 91-117.

Karim, K., B. Chokr, S. Amel, H. Wafa, H. Richid and D. Nourdine (2010). Genetic diversity of Tunisian date palm germplasm using ISSR marker. Int. J. of Botany, 6: 182-186.

Kashif, M. and I. Khaliq (2004). Heritability, correlation and path coefficient analysis for some metric traits in wheat. Int. J. Agri. Bio., 6: 138- 142.

Kearsey, M. and H. Ponni (1996). The Genetical Analysis of Quantitative Traits. Chapman and Hall. London. U.K.

Kernodle, S. P., R. E. Cannon and J. G. Scandalios (1993). Concentration of primer and template qualitatively affects product in RAPD-PCR. Biotechniques, 1: 362-364.

Khodayari, H., H. Saeidi, A. A. Roofigar, M. R. Rahiminejad, M. Pourkheirandish and T. Komatsuda (2012). Genetic diversity of cultivated barley landraces in Iran measured using microsatellites. Int. J. of Biosci., Biochemistry and Bioinformatics, 2: 287-290.

Kiflu, A. (2009). Agronomic Evaluation of Ethiopian Barley (Hordeum vulgare L.) Landrace Populations under Drought Stress Conditions in Low Rainfall Areas of Ethiopia. An MSC Thesis Submitted to Swedish Biodiversity Center.

Kosiada, T. (2008). Influence of temperature and daylight length on barley infection by Pyrenophora teres. Plant Protection Res., 48: 9-15.

Leath, S. and M. Heun (1990). Identification of powdery mildew resistance genes in cultivars of soft red winter wheat. Plant Dis., 74: 747-7582.

Liu, Z., R. E. Simon, P. O. Richard and L. F. Timothy (2011). Pyrenophora teres: Profile of an increasingly damaging barley pathogen. Mol. plant pathology, 12: 1-19.

Lombard, V., P. Dubreuil, C. Dillmann and C. Baril (2001). Genetic distance estimators based on molecular data for plant registration and protection. Review Acta Hort., 546: 55-63.

Maniruzzaman, M. (2014). Polymorphism study in barley (Hordeum vulgare) genotypes using microsatellite (SSR) markers. Bangladesh J. Agril. Res., 39: 33-45.

McDonald, B. A. and C. Linde (2002). The population genetics of plant pathogen and breeding strategies for durable resistance. Euphytica., 124: 163-180.

Muhammad, I. Kh., H. Makhdoom, M. Zulkiffal, A. Nadeem and S. Waseem (2010). Correlation and path analysis for yield and yield contributing characters in wheat (Triticum aestivum L.). African J. of Plant Sci., 4: 464-466.

Murray, M. G. and W. F. Thompson (1980). Rapid isolation of high molecular weight plant DNA. Nuc. Acids Res., 8: 4321-4325.

Nei, M. and W. H. Li (1979). Mathematical model for studing genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76: 5269-5273.

Owino, A. A., J. O. Ochuodho, J. O. Were and N. Rop (2014). Response of spring and winter barley to Pyrenophora teres under high and medium altitude zones of Kenya. Int. J. of Res. in Agri. and Food Sci., 2: 2311-2476.

Peltonen, S., M. Jalli, K. Kammiovirta and R. Karijalainen (1996). Genetic variation in Drechslera teres population as indicated by RAPD markers. Annals of Appl. Biol., 128: 465-477.

Prevost, A. and M. J. Wilkinson (1999). A new system for comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor. Appl. Genet., 98: 107-112.

Riggs, T. J., P. R. Hanson, N. D. Start, D. M. Miles, C. L. Morgan and M. A. Ford (1981). Comparsion of spring barley varieties in England and Wales between 1880 and 1980. J. of Agril. Sci., 97: 599-610.

Roldan-Ruiz, I. J. D., E. Van Bockstaele, A. Depicker and M. De Loose (2000). AFLP markers reveal high polymorphic rates in Ryegrasses (Lolium spp.) Mol. Breed., 6: 125- 134.

Russell, R., D. Fuller, M. Macaulay, G. Hatz, A. Jahoor, W. Powell and R. Waugh (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs, and RAPDs. Theor. Appl. Genet., 86: 975-984.

Sakar, M. M. (2005). A biological and molecular characterization of some Egyptian barley genotypes which are resistant to net blotch disease. Cellular & Mol. Biol. Letters, 10: 265-280.

Saker, M. M., M. Nachtigall and T. A. Kuehne (2005). Comparative assessment of DNA fingerprinting by RAPD, SSR and AFLP in genetic analysis of some barley genotypes. Egypt. J. Genet. Cytol., 97: 81-97.

Saleem, U., I. Khaliq, T. Mahmood and M. Rafique (2006). Phenotypic and genotypic correlation coefficients between yield and yield components in wheat. J. Agric. Res., 44: 1-6.

Shipton, A., N. Kahn and R. L. Bayd (1973). Net blotch of barley. Rev. Plant Pathol., 52:269-290.

Sipahi, H. (2011). Genetic screening of Turkish barley genotypes using simple sequence repeat markers. J. of Cell and Mol. Biology, 9: 19-26.

Snedecor, C. W. and W. G. Cochran (1969). Statistical Methods 6th ed. Iowa State Univ. Press, Ames, Iowa, USA.

Sosinski, B., M. Gannavarapu, L. D. Hager, L. E. Beck, G. J. King and C. D. Ryder (2000). Characterization of microsatellite markers in peach (Prunus persica (L.) Batsch). Theor. Appl. Genet., 101: 421-428.

Statkevičiūtė, G., G. Brazauskas, R. Semaškienė, A. Leistrumaitė and Z. Dabkevičius (2010). Pyrenophora teres genetic diversity as detected by ISSR analysis. Agriculture, 97: 91-98.

Steffenson, B. J., P. M. Hayes and A. Kleinhofs (1996). Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor. Appl. Genet., 92: 552-558.

Struss, D. and J. Pliescke (1998). The use of microsatellite markers for detection of genetic diversity in barley populations. Theor. Appl. Genet., 97: 308-315.

Svobodova, L. L., L. Stemberková, M. Hanusová and L. Kučera (2011). Evaluation of barley genotypes for resistance to Pyrenophora teres using molecular markers. J. of Life Sci., 5: 497-502.

Tinker, N. A., M. G. Fortin and D. E. Mather (1993). Random amplified polymorphic DNA and pedigree relationships in spring barley. Theor. Appl. Genet., 85: 976-984.

Virk, S., J. Zhu, H. Newbury, G. Bryan, M. Jackson and B. Ford-Loyd (2000). Effectiveness of different classes of molecular markers for classifying and revealing variations in rice (Oryza sativa) germplasm. Euphytica, 112: 275-284.

Wright, W. (1998). Evolution of nonassociative learning: behavioral analysis of a phylogenetic lesion. Neurobiol Learn Mem., 69: 326- 337.

Zaki, K. I. and A. I. S. Al-Masry (2008). Detection of biochemical genetic markers for net blotch disease resistance and barley grain yield. Egypt. J. Phytopathol., 36: 1-17.


  • There are currently no refbacks.

Copyright (c) 2017 Egyptian Journal of Genetics And Cytology

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.