MARKER TRAITS ASSOCIATION OF SOME BARLEY GENOTYPES UNDER SOIL SALINITY CONDITION USING SSR MARKERS
Abstract
The present study was conducted during two consecutive seasons; 2009/10 and 2010/11 to evaluate the performance of some barley genotypes under salt stress and to figure out the genetic pattern related to salt stress. Twenty barley genotypes differed in their tolerance potentiality against salinity were planted in two screening field experiments at two locations; Sakha (as a control) and El-Serw (as saline condition) to detect their tolerance to salt stress. Moreover, molecular analyses were carried out using SSR-markers technique that could be associated with salt stress. The twenty barley genotypes were planted in a randomized complete block design with three replicates; each plot consisted of a genotype planted in one row 2.5 m long and 30 cm row spacing. The other field screening experiment was executed during 2010-2011 using the same 20 genotypes at the same two locations in a randomized complete block design in bigger plots of four rows 2 m long and 20 cm apart with three replicates. In the first experiment, Egyptian barley cv. no. 2 (Giza 123) and genotype no. 12 showed the highest mean values for most of the studied traits under saline conditions, and both of barley cultivars no. 8 (California Mariout) and no. 7 (Rihane-03) gave the highest mean values for some agronomic traits, while barley cultivars no.5 (Giza 132), no. 10 (Beecher) and no.18 showed the lowest mean performance values for most of the studied characteristics. Results from the second experiment showed that genotype no.9 (Saiko) gave the highest mean values for some traits such as heading date under saline condition. Out of the used ten SSR primer pairs, only six primers (Bmac0209, Bmac316, SCssr0397, Bmag770, HVM67 and HVHOTRI) generated clear patterns with high polymorphism. The six discriminatory primer pairs were used to evaluate the marker traits association with salinity under the saline soil, marker HVHOTRI (2H) had significant analysis with days to heading, plant height and grain yield with specific common allele size 210 bp and the marker Bmac0209 (3H) with specific common allele size 135 bp was specific marker for days to heading. It was concluded that those genotypes which showed salt tolerance could serve as potentially novel germplasm that could be exploited for the development of new breeding lines with high level of salinity tolerance and to accelerate genetic advancement in barley and cost efficient compared to conventional screening under saline field conditions.References
Ahmed, I. A., A. A. El-Hag, K. A. Amer, M. A. El-Moselhy and M. A. Said (2001). Evaluation of some barley genotypes for salt tolerance. National Coordination Meeting, Egypt, ARC, Cairo, Sept., 2-4.
Ahmad, A. N., U. H. J. Intshar, A. Shamshad and A. Muhammad (2003). Effects of Na, SO and NaCl salinity levels on different yield parameters of barley genotypes. Int. J. Agric. Biol., 5: 157-159.
Aliyu, R., A. K. Adamu, S. Muazu, S. O. Alonge and G. B. Gregorio (2011). Tagging and validation of SSR markers to salinity tolerance QTLs in Rice (Oryza spp.). International Conference on Biology, Environment and Chemistry IPCBEE vol.1.
Ashraf, M. and P. J. C. Haris (2004). Potential biochemical indicators of discrimination in salinity tolerance in plants. Plant Sci., 166: 3-16.
Bengtsson, B. O. (1992). Barley Genetics. Trends in Genetics, 8: 3-5.
Bennett, M. D. and J. B. Smith (1976). Nuclear DNA amounts in angiosperms. Philos. Trans. R. Soc. Lond. Ser., 274: 227-274.
Black, C. A., D. D. Evans, J. L. White, L. E. Ensminger and F. E. Clark (1965). Methods of Soil Analysis. Part 2. Agron. Monogr. 9. American Society of Agronomy, Madison, Wisconsin, USA.
Doyle, J. J. and J. L. Doyle (1990). Isolation of plant DNA from fresh tissue. Focus, 12: 13-15.
Duncan, D. B. (1955). Multiple range and multiple F-test. Biometrics, 11: 1-42.
Edwards, K. J., J. H. A. Barker, A. Daly, C. Jones and A. Karp (1996). Microsatellite libraries enriched for several microsatellite sequences in plants. Bio-Techniques, 20: 758-760.
EI-Lakany, M. H., M. N. Hassan, A. M. Ahmed and M. Mounir (1986). Salt affected soils and marshes in Egypt; their possible use for forages and fuel production. Reclamation and Revegetation Research, 5: 49-58.
Eleuch, L., A. Jilal, S. Grando, S. Ceccarelli, M. K. Schmising, H. Tsujimoto, A. Hajer, A. Daaloul and M. Baum (2008). Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers. J. Integr. Plant Biol., 50: 1004-1014.
Ellis, R. P., B. P. Forster, D. Robinson, L. L. Handley, D. C. Gordon, J. R. Russell and W. Powell (2000). Wild barley: a source of genes for crop improvement in the 21st century? J. Exp. Bot., 51: 9-17.
Forster, B. P., J. R. Russell, R. P. Wllis, L. Handley, D. Robinson, C. A. Hackett, E. Nevos, R. I. Waugh, D. C. Gordon, R. Keith and W. Powell (1997). Locating genotypes and genes for abiotic stress tolerance in barley: a strategy using maps, markers and the wild species. New Phytologist, 137: 141-147.
Flowers, J. (2004). Improving crop salt tolerance. J. Exp. Bot., 55: 307-319.
Ghassemi, F., A. J. Jakeman and H. A. Nix (1995). Salinisation of land and water resources: Human causes, extent, management and case studies. UNSW Press, Sydney, Australia, and CAB International, Wallingford, UK Agr. Expt.
Hayden, M. J., P. Stephenson, A. M. Logojan, D. Khatkar, C. Rogers, J. Elsden, R. M. Koebner, J. W. Snape and P. J. Sharp (2006). Development and genetic mapping of sequence-tagged microsatellites (STMs) in bread wheat (Triticum aestivum L.). Theor. Appl. Genet., 113: 1271-1281.
Hearnden, P. R., P. J. Eckermann, G. L. McMichael, M. J. Hayden, J. K. Eglinton and K. J. Chalmers (2007). A genetic map of 1000 SSR and DArT loci in a wide barley cross. Theor. Appl. Genet., 115: 383-391.
Ivandic, V. C., A. Hackett, E. Nevo, R. Keith, W. T. B. Thomas and B. P. Foster (2002). Analysis of simple sequence repeat (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Mol. Biol., 48: 511-527.
Karakousis, A. (2002). The development, identification and application of SSR markers for use in Australian barley (Hordeum vulgare L.) breeding programs. PhD Thesis, Department of Plant Science, University of Adelaide, Australia.
Karakousis, A., J. P. Gustafson, K. J. Chalmers, A. R. Barr and P. Langridge (2003). A consensus map of barley integrating SSR, RFLP and AFLP markers. Aus. J. Agric. Res., 54: 1173-1185.
Kleinhofs, A. and A. Graner (2001). An integrated map of the barley genome. In: DNA-based Markers in Plants, 2nd Edition, Edited by RL Phillips, IK Vasil, Kluwer Academic Publishers, Dordrecht, p. 187-200.
Mariey, A. Samah (2004). Genetical and molecular studies on barley salt tolerance. MSc. Thesis, Tanta Univ., Egypt.
Munns, R. and M. Tester (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59:651-681.
Naseer, S. H., A. Nisar and M. Ashraf (2001). Effect of salt stress on germination and seedling growth of salt stress in the selection of salt tolerance hybrids in barley (Hordeum vulgare L.). Pak. J. Biol. Sci., 4: 359-360.
Oraby, H. F., C. B. Ransom, A. N. Kravchenko and M. B. Sticklen (2005). Barley HVA1 Gene Confers Salt Tolerance in R3 Transgenic Oat. Crop Sci., 45: 2218-2227.
Petersen, G. and O. Seberg (1998). Molecular characterization and sequence polymorphism of the alcohol dehydrogenase1 gene in Hordeum vulgare L. Euphytica, 102: 57-63.
Pillen, K., A. Binder, B. Kreuzkam, L. Ramsay, R. Waugh, J. Forster and J. Leon (2000). Mapping new EMBL-derived barley microsatellites and their use in differentiating German barley cultivars. Theor. Appl. Genet., 101: 652-660.
Piper, C. S. (1950). Soil and Plant Analysis. Adelaide University Hassel Press, Australia, pp. 368.
Powell, W. (1997). Molecular biology. In: Macfarlane Smith W. H., Heilbron T. D., eds. Scottish Crop Research Institute Annual Report 1996/97. Dundee: Burns and Harris, 79-82.
Pupko, T. and D. Graur (1999). Evolution of microsatellites in the yeast Saccharomyces cerevisiae: Role of length and number of repeated units. Journal of Molecular Evolution, 48: 313-316.
Qian, G., J. Ping, D. Wang, Z. Zhang and S. Luo (2011). Malt genotypic screening of polymorphism information content (PIC) of PCR-based marker in barley, based on physiological traits. Molecular Biology, 1: 101-106.
Ramsay, L., M. Macaulay, Ivanissevich Degli, S. MacLean, K. Cardle, L. Fuller, J. Edwards, K. Tuvesson, S. Morgante, M. Massari, A. Maestri, E.Marmiroli, N. Sjakste, T. Ganal, M. Powell and W. R. Waugh (2000). A simple sequence repeatbased map of barley. Genetics, 156: 1997-2005.
Röder, M. S., X. Q. Huang and M. W. Ganal (2004). Wheat microsatellites: potential and implications. In:Lörz H, Wenzel G., eds. Biotechnology in agriculture and forestry: molecular marker systems. Springer Verlag: 255-266.
Saghai-Merof, A., R. M. Biyashev, G. P. Yang, Q. Zhang and R. W. Allard (1994). Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations and population dynamics. Proc. Natl. Acad. Sci., 91: 5466-5470.
Singh, A. P. (2011). Genetic variability in two-rowed barley. Indian J. Sci. Res., 2: 21-23.
Snedecor, C. W. and W. G. Cochran (1969). Statistical Methods 6th ed. Iowa State Univ. Press, Ames, Iowa, USA.
Taghipour, F. and M. Salehi (2008). The study of salt tolerance in Iranian barley (Hordeum vulgare L.) genotypes in seedling growth stage. Am. Eu. J. Agric. Environ. Sci., 4: 525-529.
Varshney, R. K., T. C. Marcel, L. Ramsay, J. Russell, M. S. Röder, N. Stein, R. Waugh, P. Langridge, R. E. Niks and A. Graner (2007). A
high density barley microsatellite consensus map with 775 SSR loci. Theor. Appl. Genet., 114: 1091-1103.
Waugh, R. M., K. McLean, J. Fuller, N. Bonar, L. Ramsay and W. Powell (1997). Development of a simple sequence repeat based linkage map of barley. In: Perry D. A., Heilbronn T. D., eds. Scottish Crop Research Institute Annual Report 1996/7, Dundee: Burns and Harris, 82-84.