GENETIC DIVERSITY AMONG SOME Vicia narbonensis L. VARIETIES AS REVEALED BY KARYOTYPE AND PROTEIN ANALYSIS
Abstract
The genus Vicia belongs to the Legumes, family leguminosae which is considered one of the largest families of flowering Plants and repre- sents tremendous morphological, ecologi- cal and genetic diversity. It includes approximately 140 species (Weber and Schifino-Wittman, 1999) in which Vicia narbonensis L. (narbon bean) is one of an annual leguminous species with the potential to become an important grain and straw crop for animal feed. The understanding of the interpretation of evolutionary pathway depends on karyo- type studies are of a particular importance. V. narbonensis represents a species with relatively large genome (7.3 Pg/1C) (Navrátilová et al., 2003) and the previous studies revealed that all accessions of V. narbonensis have one karyotype (Perino and Pignome, 1981; Singh and Lelley, 1982; Cremonini et al., 1998a; Ashour et al., 2005). Others found different karyotype formulae for some accessions (Svesschnikova, 1927; Yamamoto, 1973; Cremonini et al., 1998b; Koul et al., 1999; Navrátilová et al., 2003). The use of gel electrophoresis of seed protein in phylogeny is supported by the fact that mature seeds posses the same protein components unchanged with age or environmental stress, and thus provide valid evidence for genetic relatedness (Crawford, 1990). Sammour (1987) car- ried out a comparative study on seed proteins of a number of wild Vicia species and its varieties. The study showed variation among V. narbonensis var. Aegyptiaca, which originated from V. narbonensis var. narbonensis and V. narbonensis var jordanica. El-Badan (2003) found close similarity in the seed protein profiles of the cultivated Vicia species and Vicia narbonensis var narbonensis indicated that this species can be considered as the immediate progenitor of V. faba. The previous studies confirmed that V. narbonensis is the closest genome of the wild species to V. faba and may share some common gene loci from a common ancestor and evolved in different pathways (Ashour et al., 2005). Consequently, for breeding and seed production, reliable genotype identification is necessary.
In this study seeds of V. narbonen- sis from 9 locations in the Middle East were used for karyological and protein analysis. This study aims to clarify the genetic diversity among V. narbonensies varieties collected from different geo- graphical regions and to join three unknown V. narbonensis varieties to their similar group (variety) based on karyo- type and protein analysis.
References
Ashour, F. M., L. M. El-Sadek and G. E. El-Badan (2005). Karyotypic relat- edness among Vicia species. Egypt. J. Genet. Cytol., 34: 345-353.
Bisht, M. S., K. Kesavacharyulu and S. N. Raina (1998). Nucleolar chromo- some variation and evolution in genus Vicia. Caryologia, 51: 133-147.
Crawford, D. J. (1990). Plant Molecular Systematics. A Willey interscience publication. John Willy and Sons. New York.
Cremonini, R., D. Miotto, M. A. Nug, D. Tota, D. Pignone, S. Blangiforti and G. Venora (1998a). Cytology of Vicia species. 5. Nuclear chromatin structure, karyomor- phological analysis and DNA content in newly discovered relatives of Vicia faba L. Vicia kalakhensis khattab, Maxted et bbisby and Vicia eristalioides Maxted. Cytologia, 63: 371-379.
Cremonini, R., M. R. Castiglione, G. Venora, S. Blangiforti, F. P. Losavio and D. Pignone (1998b). cytology of Vicia faba species.VI. Nuclear Chromatin organization, Karyomorphological analysis and DNA amount in Vicia serrtifolia Jacq. Caryologia, 51: 195-205.
El-Badan, G. E (2003). Karyotypic and genetic characterization of wild and cultivated relatives of Faba bean. M. Sc. thesis Alex. Univ. Egypt.
El-Nahas, A. I. (2000). Chromosomal criteria in relation to seed protein of some Egyptian cultivars of Vicia faba. Egypt. J. Biotechnol.,
: 276-291.
Goodrich, W. J., R. J. Cooke and A. G. Morgan (1985). The application of electrophoresis to characterization of cultivars of Vicia faba L. Fabis Newsletter, 3: 8-11.
Greilhuber, J. (1979). C-band distribution, DNA content and base composi- tion in Adoxa moschatellina (Adoxaceae), a plant with cold- sensitive chromosome segments. Pl. Syst. Evol., 131: 243-259.
Greilhuber, J. and F. Speta (1977). Giemsa karyotypes and their evolutionary significance in Scilla bifolia, S. duriensis, and S. vindo- bonensis (Liliaceae). Pl. Syst. Evol., 127: 171-190.
Greilhuber, J. and F. Speta (1978). Quantitative analysis of c- banded karyotypes, and systematics in the cultivated species of the Scilla siberica group (Liliaceae). Pl. Syst. Evol., 129: 63-109.
Kamel, E. A. (1999). Karyological studies on some taxa of geneus Vicia L. (Fabaceae). Cytologia, 64: 441-448.
Koul, K. K., S. N. Raina, A. Parida and M. S. Bisht (1999). Sexdifferences in meiosis between Vicia faba L. and its close wild relatives. Bot. J. of Linnean Society, 129: 239-247.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 227: 680-685.
Levan, A., K. Fredga and A. A. Sandberg (1965). Nomenclature for centro- meric position on chromosomes. Hereditas, 52: 201-220.
Linde-Laursen I., R. V. Bothmer and J. Jacobsen (1980). Giemsa C- band- ing in Asiatic taxa of Hordeum section Stenostachys with notes on chromosome morphology. Heredi- tas, 93: 235-254.
Millerd, A., M. Simon and H. Stern (1971). Legumin synthesis in developing cotyledons of Vicia faba L. Plant Physiol., 48: 419-425.
Mudzana, G., A. A. Pickett, R. J. Jarman, R. T. Cooke and P. D. Keefe (1995). Variety discrimination in faba beans (Vicia faba L.) an integrated approach. Plant Varie- ties and Seeds, 8: 135-145.
Naranjo, C. A., M. R. Ferrari, A. M. Palermo and L. Poggio (1998). DNA content and meiotic behavior in five South American species of Vicia (Fabaceae). Annals of Botany, 32: 757-767.
Navrátilová, A., P. Neumann and J. Macas (2003). Karyotype analysis of four Vicia species using in situ hybridization with repetitive se- quences. Annals of Botany, 91:921-926.
Perino, P. and D. Pignome (1981). Con- tribution to the taxonomy of Vicia species belonging to the section Faba. Kulturpflanze, 39: 311-319.
Raina, S. N., Y. Mukai, K. Kawaguchi, S. Goel and A. Jain (2001). Physical mapping of 18S-5.8S and 5S ribosomal RNA gene families in three important vetches (Vicia species) and their allied taxa constituting three species com- plexes. Theor. Appl. Genet., 103:839-845.
Ramesh, B. and Salimuddin (1992).Lentil: LENS Newsletter, 19: 3-8.
Reeves, A. (2001). MicroMeasure: A new computer program for the collec- tion and analysis of cytogenetic data. Geneome, 44: 439-443.
Rolf, F. J. (2002). NTSYS-Pc: Reference Manual. Exeter publishing Ltd. New York. Sammour, R. H. (1987). Chemical constituents and electro- phoresis of seed protein of some species of Vicia. Fabis Newsletter,18: 30-32.
Singh, V. P. and T. Lelley, (1982). Giemsa C-banding karyotype of Vicia narbonensis as compared to Vicia faba. Fabis Newsletter, 4:24-25.
Sinha, S. S. N. and S. S. Acharia, (1972). Karyotype analysis in some varie- ties of Lenes culinaris. Cytologia,
: 673-683.
Svesschnikova, I. N. (1927). Karyological studies on Vicia. Bull. Appl. Bot. Gen. Plant Breed., 17: 63-72.
Vosa, C. G. (1976a). Heterochromatin patterns in Allium: 1- the relation- ship between the species of the cepa group and its allies. Heredity, 36: 383-393.
Vosa, C. G. (1976b). Heterochromatin patterns in Allium: 2- heterochro- matin variation in species of the paniculatum group. Chromosoma, 57: 119-133.
Vosa, C. G. (1979). Heterochromatic banding patterns in the chromo- somes of Brimeura (Liliaceae). Pl. Syst. Evol., 132: 141-148.
Weber, L. H. and M. T. Schifino-Wittman (1999). The Vicia sativa L. aggre- gate (Fabaceae) in southern Barazil. Genet. Resour. Crop Evol. 46: 207-211.
Yamamoto, K. (1973). Karyotaxonomical studies on Vicia on the karyotype and character of some annual species of Vicia. Japan. J. Genetics, 48: 315-327
Zarco, C. R. (1986). A new method for estimating karyotype asymmetry. Taxon., 35: 526-530.