GENETIC DIVERSITY OF Waitea circinata var. zeae IN SOUTH CAROLINA REVEALED BY AMPLIFIED FRAGMENT LENGTH POLYMORPHISM (AFLP)

Authors

  • Z. EL FIKY Genetics Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
  • H. FOULY Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
  • B. MARTIN Department of Entomology, Soils and Plant Sci., Clemson University, Clemson, SC 29634, USA

Abstract

Rhizoctonia zeae (Waitea circinata var. zeae) is pathogenic to rice (Oniki et al., 1985); corn (Sumner and Bell, 1982); onion (Erper et al., 2006); sugarbeet (Kuznia and Windels, 1994); wheat and barley (Ogoshi et al., 1990) and tall fescue (Martin and Lucas, 1983). Waitea circinata var. zeae also causes foliar lesions on bermuda grass, creeping bentgrass and annual bluegrass (Burpee and Martin, 1992; Hsiang and Dean, 2001) during midsummer. Diseases of turfgrass caused by these pathogens occur most frequently during the warm and humid season, at temperatures between 28 and 36°C, inciting leaf and sheath spot (Burpee and Martin, 1992; Smiley et al., 1992).
Waitea circinata (Warcup and Talbot) classified into three varieties, W. circinata var. circinata, W. circinata var. oryzae and W. circinata var. zeae based on differences in the colony morphology of the vegetative state (Gunnell, 1986). Waitea circinata var. circinata forms orange to dark brown, globose sclerotia up to 2 mm in diameter; W. circinata var. oryzae forms orange to salmon, irregularly shaped sclerotia; and W. circinata var. zeae forms orange to brown, regularly shaped sclerotia up to 1 mm in diameter (Leiner and Carling, 1994). Rhizoctonia zeae was assigned to Waitea anastomosis group WAG-Z (Oniki et al., 1985).
Previous studies have examined genetic variation of these three varieties at molecular level. Random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) of rDNA internal transcribed spacer (ITS) region revealed that isolates of W. circinata var. circinata, W. circinata var. oryzae and W. circinata var. zeae separated into individual clusters (Toda et al., 2005). These results confirmed by using sequence analysis of the internal transcribed spacer (ITS) region of rDNA (de la Cerda et al., 2007; Toda et al., 2007).
Amplified fragment length polymorphism (AFLP) is a genetic mapping technique based on selective amplification of a subset of restriction enzyme-digested DNA fragments to create a unique fingerprint for a particular genome (Vos et al., 1995). It is highly reproducible and amenable to a wide range of applications and DNA sources. For these reasons, the method has steadily gained popularity in applications, including genetic mapping (Mueller and Wolfenbarger, 1999; Savelkoul et al., 1999), medical diagnostics (Klaassen et al., 2002; Borst et al., 2003; van den Braak et al., 2004), genetic diversity and phylogenetic studies (Tredway et al., 1999; Bakkeren et al., 2000; Doignon-Bourcier et al., 2000; Rademaker et al., 2000; Mougel et al., 2002; Lee et al.,2004) and environmental management studies (Lucchini, 2003).
The similarities within each variety of W. circinata were very high, but similarities were significantly lower between varieties by using rDNA-ITS region (Toda et al., 2007). In this study, we used amplified fragment length polymorphism (AFLP) to examine the genetic diversity of field population of W. circinata var. zeae.

References

Bakkeren, G., J. W. Kronstad and C. A. Levesque (2000). Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilaginomycetes. Mycologia, 92: 510-521.

Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell and M. J. Donoghue (1995). The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri Bot. Gard., 82: 247-277.

Borst, A., B. Theelen, E. Reinders, T. Boekhout, A. C. Fluit and P. H. M. Savelkoul (2003). Use of amplified fragment length polymorphism analysis to identify medically important Candida spp., including C. dubliniensis. J. Clin. Microbiol., 41: 1357-1362.

Burpee, L. and B. Martin (1992). Biology of Rhizoctonia species associated with turfgrasses. Plant Disease, 76: 112-117.

Ceresini, P. C., H. D. Shew, R. Vilgalys and M. A. Cubeta (2002). Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco North Carolina. Mycologia, 94: 437-449.

Collado-Romero, M., J. Mercado-Blanco, C. Olivares-Garcia and R. M. Jimenez-Diaz (2008). Phylogenetic analysis of Verticillium dahliae vegetative compatibility groups. Phytopathology, 98: 1019-1028.

de Barros Lopes, M., S. Rainieri, P. A. Henschke and P. Langridge (1999). AFLP fingerprinting for analysis of yeast genetic variation. Int. J. Syst. Bacteriol., 49: 915-924.

de la Cerda, K. A., G. W. Douhan and F. P. Wong (2007). Discovery and characterization of Waitea circinata var. circinata affecting annual bluegrass from the Western United States. Plant Disease, 91: 791-797.

Doignon-Bourcier, F., A. Willems, R. Coopman, G. Laguerre, M. Gillis and P. de Lajudie (2000). Genotypic characterization of Bradyrhizobium strains nodulating small Senegalese legumes by 16S-23S rRNA intergenic gene spacers and amplified fragment length polymorphism fingerprint analyses. Appl. Environ. Microbiol., 66: 3987-3997.

Erper, I., G. H. Karaca, M. Turkkan and I. Ozkoc (2006). Characterization and pathogenicity of Rhizoctonia spp. from onion in amasya. J. Phytopathol, 154: 75-79.

Gunnell, P. S. (1986). Characterization of the teleomorphs of Rhizoctonia oryzae-sativae, Rhizoctonia oryzae, and Rhizoctonia zeae, and the effect of cultural practices on aggregate sheath spot of rice, caused by R. oryzaesativae. PhD. Thesis. University of California, Davis.

Hsiang, T. and J. D. Dean (2001). DNA sequencing for anastomosis grouping of Rhizoctonia solani isolates from Poa annua. Int. Turfgrass Soc. Res., 9: 674-678.

Hynes, S. S., O. Chaudhry, M. A. Providenti and M. L. Smith (2006). Development of AFLP-derived, functionally specific markers for environmental persistence studies of fungal strains. Can. J. Microbiol., 52: 451-461.

Klaassen, C. H. W., H. A. van Haren and A. M. Horrevorts (2002). Molecular fingerprinting of Clostridium difficile isolates: pulsed-field gel electrophoresis versus amplified fragment length polymorphism. J. Clin. Microbiol., 40: 101-104.

Kuznia, R. A. and C. E. Windels (1994). Rhizoctonia zeae pathogenic to spring wheat and sugarbeet seedlings. Phytopathology, 84: 1159.

Lee, C. Z., G. Y. Liou and G. F. Yuan (2004). Comparison of Aspergillus flavus and Aspergillus oryzae by amplified fragment length polymorphism. Bot. Bull. Acad. Sin., 45: 61-68.

Leiner, R. H. and D. E. Carling (1994). Characterization of Waitea circinata (Rhizoctonia) isolated from agricultural soils in Alaska. Plant Disease, 78: 385-388.

Lucchini, V. (2003). AFLP: a useful tool for biodiversity conservation and management. Comptes Rendus Biologies., 326 (Supplement 1): 43-48.

Martin, S. B. and L. T. Lucas (1983). Pathogenicity of Rhizoctonia zeae on tall fescue and other turfgrasses. Plant Disease, 67: 676-678.

Mougel, C., J. Thioulouse, G. Perriere and X. Nesme (2002). A mathematical method for determining genome divergence and species delineation using AFLP. Int. J. Syst. Evol. Microbiol., 52: 573-586.

Mueller, U. G. and L. L. Wolfenbarger (1999). AFLP genotyping and fingerprinting. Trends Ecol. Evol., 14: 389-394.

Mueller, U. G., S. E. Lipari and M. G. Milgroom (1996). Amplified fragment length polymorphism (AFLP) fingerprinting of symbiotic fungi cultured by the fungus-growing ant Cyphomyrmex minutes. Mol. Ecol., 5:119-122.

Ogoshi, A., R. J. Cook and E. N. Bassett (1990). Rhizoctonia species and anastomosis groups causing root rot of wheat and barley in the Pacific Northwest. Phytopathology, 80: 784-788.

Oniki, M., A. Ogoshi, T. Araki, R. Sakai and S. Tanaka (1985). The perfect state of Rhizoctonia oryzae and R. zeae and anastomosis groups of Waitea circinata. Trans. Mycol. Soc. Jpn., 26: 189-198.

Rademaker, J. L. W., B. Hoste, F. J. Louws, K. Kersters, J. Swings, L. Vauterin, P. Vauterin and F. J. de Bruijn (2000). Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int. J. Syst. Evol. Microbiol., 50: 665-677.

Ridout, C. J. and P. Donini (1999). Use of AFLP in cereals research. Trends Plant. Sci., 4: 76-79.

Riesberg, L. H. and D. E. Soltis (1991). Phylogenetic consequences of cytoplasmic gene flow in plants. Evol. Trends Plant, 5: 65-84.

Savelkoul, P. H. M., H. J. M. Aarts, J. de Haas, L. Dijkshoorn, B. Duim, M. Otsen, J. L. W. Rademaker, L. Schouls and J. A. Lenstra (1999). Amplified-fragment length polymorphism analysis: the state of an art. J. Clin. Microbiol., 37: 3083-3091.

Smiley, R. W., P. H. Dernoeden and B. B. Clarke (1992). Compendium of Turfgrass Diseases. American Phytopathological Society, St. Paul., MN.

Sumner, D. R. and Bell D. K. (1982). Root diseases induced in corn by Rhizoctonia solani and Rhizoctonia zeae. Phytopathology, 72: 86-91.

Swofford, D. L. (2005). PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0b10 for Windows. Sinauer Associates, Sunderland, Massachusetts.

Toda, T., T. Hayakawa, J. M. Mghalu, S. Yagushi and M. Hyakumachi (2007). A new Rhizoctonia sp. closely related to Waitea circinata causes a new disease of creeping bentgrass. J. Gen. Plant Pathol., 73: 379-387.

Toda, T., T. Mushika, T. Hayakawa, A. Tanaka, T. Tani and M. Hyakumashi (2005). Brown ring patch: a new disease on bentgrass caused by Waitea circinata var circinata. Plant Disease, 89: 536-542.

Tredway, L. P., J. F. White, B. S. Gaut, P. V. Reddy, M. D. Richardson and B. B. Clarke (1999). Phylogenetic relationships within and between Epichloe and Neotyphodium endophytes as estimated by AFLP markers and rDNA sequences. Mycol. Res., 103: 1593-1603.

van den Braak, N., G. Simons, R. Gorkink, M. Reijans, K. Eadie, K. Kremers, D. van Soolingen, P. Savelkoul, H. Verbrugh and A. van Belkum (2004). A new high-throughput AFLP approach for identification of new genetic polymorphism in the genome of the clonal microorganism Mycobacterium tuberculosis. J. Microbiol., Methods, 56: 49-62.

Vos, P., R. Hogers, M. Bleeker, M. Rei- jans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper and M. Zabeau (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23: 4407-4414.

Downloads

Published

2016-01-11

Issue

Section

Articles