CULTIVAR-SPECIFIC RESPONSES OF STEVIA REBAUDIANA TO MULTI-WALLED CARBON NANOTUBES: EFFECTS ON GROWTH, STEVIOL GLYCOSIDE PRODUCTION, AND GENE EXPRESSION
Abstract
This study investigated the effects of multi-walled carbon nanotubes (MWCNTs) on growth, steviol glycoside production, and gene expression in three Stevia rebaudiana cultivars: High Sugar, ShouA3-2, and Levan. The research aimed at understanding how MWCNTs impact these important aspects of stevia cultivation, potentially informing future agricultural practices and steviol glycoside production methods. MWCNTs nonsignificantly affect shoots number and shoots diameter means in the three cultivars, and showed significant differences for shoots length means across all cultivars and number of roots in Levan under T3 and number of leaves in all cultivars under T2 when applied to in vitro cultures at 1, 1.5, and 2 mg/L MWCNTs concentrations. HPLC analysis revealed cultivar-specific responses in steviol glycoside content. The High Sugar cultivar showed increased stevioside (2625.60 ppm) and rebaudioside A (1971.34 ppm) content with Aqua regia treatment. The ShouA3-2 cultivar exhibited maximum stevioside content (1681.86 ppm) at 1 mg/L MWCNTs, while the Levan cultivar produced the highest stevioside (2788.194 ppm) at 1.5 mg/L MWCNTs. Gene expression analysis of UGT74G1 and UGT85C2 demonstrated cultivar-specific modulation in response to MWCNTs. The two cultivars, High Sugar and ShouA3-2, showed higher expression than Levan. The study reveals that the effects of MWCNTs on Stevia rebaudiana are cultivar-specific, particularly regarding steviol glycoside production and gene expression. The relationship between gene expression and steviol glycoside content under MWCNT treatment is complex and not always directly correlated, highlighting the intricate nature of secondary metabolite biosynthesis in Stevia rebaudiana. The relative stability of both UGT74G1 and UGT85C2 expression across stevia cultivars suggests that steviol glycoside biosynthesis in these cultivars may be regulated by mechanisms that are not readily influenced by MWCNTs at the tested concentrations.
References
Abdel Hamid R. I., Abdel-Tawab F. M., Abdel Razik A. B., Allam A. I. and EL Doliefy, A. E. A., (2018). Micropropagation and start codon targeted characterization of four Stevia cultivars in Egypt. Arab Universities Journal of Agricultural Sciences, 26 (2): 635-645. https://doi.org/10.21608/ajs.2018.15968
Abdelsalam N. R., Botros W. A. and Khaled A. E., (2019). Comparison of uridine diphosphate-glycosyltransferase UGT76G1 genes from some varieties of Stevia rebaudiana Bertoni. Scientific Reports, 9: 8559. https://doi.org/10.1038/s41598-019-44989-4
Adesanya F. A. and Fayemi O. E., (2023). Anthracene electrochemical sensor at fMWCNTs/ZnO modified glassy carbon electrode. International Journal of Electrochemical Sci., 18 (12): 100382. https://doi.org/10.1016/j.ijoes.2023.100382
Al-Shaheen M. R., Zakaria Z. and Al- Shaheen, M. R., (2021). The biological response of Stevia rebaudiana Bertoni to bio-enriched and nano amino acids. IOP Conference Series: Earth and Environmental Science, 761 (1): 012041. https://doi.org/10.1088/1755-1315/761/1/012041
Anjum S., Anjum, I., Hano C. and Kousar, S., (2019). Advances in nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites: Current status and future . RSC Advances, 9 (69): 40404-40423. https://doi.org/10.1039/c9ra08457f
Aranda-González I., Moguel Ordóñez, Y. and Betancourt, D., (2015). Determination of rebaudioside A and stevioside in leaves of S. rebaudiana Bertoni grown in México by a validated HPLC method. American Journal of Analytical Chemistry, 6: 878-885. https://doi.org/10.4236/ajac.2015.611083
Behroozi P., Baghizadeh A. and Saei, A., (2017). Quantitative analysis of uridine diphosphate glycosyltransferase UGT85C2, UGT74G1, and UGT76G1 genes expression in Stevia rebaudiana under different irrigations. Russian Journal of Plant Physiology, 64: 67-72. https://doi.org/10.1134/S1021443717010034
Brandle J. E. and Telmer P. G., (2007). Steviol glycoside biosynthesis. Phyto-chemistry, 68 (14): 1855-1863. https://doi.org/10.1016/j.phytochem.2007.02.010
Cisneros G. J., Ochoa-Barragán R., Ku- mar-Tiwari D., Sánchez-Yáñez J. M. and Villegas-Moreno J., (2023). Synthetic multi-walled carbon nanotubes affect Arabidopsis thaliana growth through blocking the TOR signaling pathway. Microscopy and Microanalysis, 29 (Suppl 1): 15- 18. https://doi.org/10.1093/micmic/ozad067.007
Elgeabeily N. F., Emara H. A., Badr Elden A. M., Abd Elmaksoud A. I. and Massoud O. R. M., (2020). Enhancement of bio-chemical properties of natural sweetener of Stevia rebaudiana by using abscisic acid and paclobutrazol. Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Egypt.
Ghorbani T., Kahrizi D., Saeidi M. and Arji I., (2017). Effect of sucrose concentrations on Stevia rebaudiana Bertoni tissue culture and gene expression. Cellular and Molecular Biology, 63 (8): 33. https://doi.org/10.14715/cmb/2017.63.8.8
Ghose A. K., Abdullah S. N. A., Hatta M. A. and Megat Wahab P. E., (2022). In vitro regeneration of Stevia (Stevia rebaudiana Bertoni) and evaluation of the impacts of growth media nutrients on the biosynthesis of steviol glycosides (SGs). Agronomy, 12: 1957. https://doi.org/10.3390/agronomy12081957
Hajihashemi S. and Geuns J. M. C.m (2016). Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation. FEBS Open Bio, 6: 937-944. https://doi.org/10.1002/2211-5463.12099
Hashem M. M., AbdelHamid R. I., AbuelMaaty S., Elassal S. S. and El- Doliefy A. E. A., (2021). Differential UGT76G1 and start codon-based characterization of six stevia germlines in Egypt. Biocatalysis and Agricultural Biotechnology, 33: 101981. https://doi.org/10.1016/j.bcab.2021.101981
Kumar V., Sachdev D., Pasricha R., Ma- heshwari P. H. and Taneja N. K., (2018). Zinc-supported multiwalled carbon nano-tube nanocomposite: A synergism to micronutrient release and a smart distributor to promote the growth of onion seeds in arid conditions. ACS Applied Materials and Interfaces, 10 (43): 36733-36745. https://doi.org/10.1021/acsami.8b13464
Lala S. (2021). Nanoparticles as elicitors and harvesters of economically important secondary metabolites in higher plants: A review. IET Nanobiotechnology, 15 (1): 28- 57. https://doi.org/10.1049/nbt2.12005
Miladinova G. K., Geneva M., Stancheva, I., Petrova M., Sichanova M. and Kirova E., (2022). Effects of different elicitors on micropropagation, biomass and secondary metabolite production of Stevia rebaudiana Bertoni—A review. Plants (Basel, Switzerland), 12 (1): 153. https://doi.org/10.3390/plants12010153
Murashige T. and Skoog, F., (1962). A revised medium for rapid growth and bio- assays with tobacco tissue cultures. Plant Physiology, 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
Nishiyamla P., Alvarez M. and Vieira L. G., (1992). Quantitative analysis of steviod in the leaves of S. rebaudiana by near-infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture, 59: 277-281. https://doi.org/10.1002/jsfa.2740590302
Ramezan D., Farrokhzad Y., Mokhtassi- Bidgoli, A. and Rasouli-Alamuti M., (2022). Multi-walled carbon nanotubes interact with light intensity to affect morpho-biochemical, nutrient uptake, DNA damage, and secondary metabolism of Stevia rebaudiana. PLOS ONE, 17 (4) : e0266508. https://doi.org/10.1371/journal.pone.0266508
Ramezani M., Asghari, S. Gerami, M., et al. (2020). Effect of silver nanoparticle treatment on the expression of key genes involved in glycosides biosynthetic path- way in Stevia rebaudiana B. plant. Sugar Tech, 22: 518-527. https://doi.org/10.1007/s12355-019-00786-x
Rao X., Huang, X., Zhou Z. and Lin X., (2013). An improvement of the 2ˆ (-delta delta CT) method for quantitative real-time polymerase chain reaction data anal- ysis. Biostatistics, Bioinformatics and Biomathematics, 3 (3): 71-85.
Rezaei Z., Jafarirad S. and Kosari-Nasab M., (2019). Modulation of secondary metabolite profiles by biologically synthesized MgO/perlite nanocomposites in Melissa officinalis plant organ cultures. Journal of Hazardous Materials, 380, 120878. https://doi.org/10.1016/j.jhazmat.2019.120878
Rokosa M. T. and Kulpa D., (2020). Mi- cropropagation of Stevia rebaudiana plants. Ciência Rural, 50 (1): e20181029. https://doi.org/10.1590/0103-8478cr20181029
Salem J., (2020). Effects of antiethylene compounds on vitrification and genome fidelity of Stevia rebaudiana Bertoni. Egyptian Journal of Botany, 60 (2): 519- 535. https://doi.org/10.21608/ejbo.2020.19706.1392
Snedecor G. W. and Cochran W. G., (1980). In Statistical Methods (7th ed.). The Iowa State University Press.
Snyder L. R., Kirkland, J. J. and Dolan J. W., (2010). Introduction to Modern Liquid Chromatography (3rd ed.). John Wiley and Sons.
Wang P., Lombi E., Zhao F. J. and Ko- pittke P. M., (2016). Nanotechnology: A new opportunity in plant sciences. Trends in Plant Science, 21 (8): 699-712. https://doi.org/10.1016/j.tplants.2016.04.005
Wilfinger W. W., Mackey K. and Chomczynski P., (1997). Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Bio-Techniques, 22 (3): 474-481. https://doi.org/10.2144/97223st01
Wu Q., La Hovary C., Chen H. Y., Li X., Eng H., Vallejo V., Qu R. and Dewey R. E., (2020). An efficient Stevia rebaudiana transformation system and in vitro en- zyme assays reveal novel insights into UGT76G1 function. Scientific Reports, 10 (1): 3773. https://doi.org/10.1038/s41598-020-60776-y
Zhuzhukin K. V., Evlakov P. M., Grodetskaya T. A., Gusev A. A., Zakharova O. V., Shuklinov A. V. and Tomina E. V., (2023). Effect of multi-walled carbon nanotubes on the growth and expression of stress resistance genes in birch. Forests, 14: 163. https://doi.org/10.3390/f14010163