ISOLATION, IDENTIFICATION AND BIOCONTROL POTENTIAL OF NATIVE SOIL-DERIVED Trichoderma spp.

Authors

  • NEHAL ATTA Genetics Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom
  • ABDELMEGID I FAHMI Genetics Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom
  • KHALID S. ABDEL-LATEIF Genetics Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom
  • HESHAM H. NAGATY Genetics Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom
  • ENAS M. ABD EL-GHANY Genetics Department, Faculty of Agriculture, Menoufia University, Shibin El-Kom

Abstract

This research aimed to specifically identify 31 isolates at the species level using morphological characteristics combined with DNA barcoding sequence analysis of full-fragment rDNA ITS1 and ITS2 gene regions. The identified species were determined to be T. harzianum (23 strains), T. asperellum (6 strains), and T. longibrachiatum (2 strains). The phylogenetic analysis of the 31 isolates of the ITS region revealed that they formed four clades. Three of them included the isolates of each specific species, while a separate clade included two different isolates. The two isolates MNF-NAH-Tricho5 and MNF-NAH-Tricho30 presented the highest antifungal activity against Rhizoctonia solani (71.43 and 64.29%) and Macrophomina phaseolina (84.1 and 85.13%) according to the dual culture assay. Finally, various strategies to combat phytopathogens, including competition, antibiosis, or parasitism, have been developed for Trichoderma isolates. The overall study confirmed that the MNF-NAH- Tricho5 and MNF-NAH-Tricho30 strains may serve as prospective biocontrol agents to combat Rhizoctonia solani and Macrophomina phaseolina in environmental applications.

References

Anees M., Tronsmo A., Edel-Hermann V., Hjeljord L., Héraud C. and Steinberg C., (2010). Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol., 114:691-701. https://doi.org/10.1016/J.FUNBIO.2010.05.007

Balajee S. A. and Marr K. A., (2006). Phenotypic and genotypic identification of human pathogenic aspergilli. Future Microbiol, 1:435-445. https://doi.org/10.2217/17460913.1.4.435

Cai F. and Druzhinina I. S., (2021). In honor of John Bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Divers 107:1-69. https://doi.org/10.1007/S13225-020-00464-4

Chaverri P., Branco-Rocha F., Jaklitsch W., Gazis R., Degenkolb T. and Samuels G., (2015). Systematics of the Trichoderma harzianum species complex and the reidentification of commercial biocontrol strains. Mycologia, 107:558-590. https://doi.org/10.3852/14-147

Dhingra O. D. and Sinclair J. B., (1995). Basic Plant Pathology Methods (2nd ed.). CRC Press. 1-434. https://doi.org/10.1201/9781315138138

Druzhinina I. S., Kopchinskiy A. G., Komoń M., Bissett J., Szakacs G. and Kubicek C. P., (2005). An oligo-nucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol., 42:813-828. https://doi.org/10.1016/J.FGB.2005.06.007

Edgar R. C., (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32:1792-1797. https://doi.org/10.1093/NAR/GKH340

Elad Y., (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19:709-714. https://doi.org/101016/S0261-2194(00)00094-6

Elhamouly N., Hewedy O., Zaitoon A., Miraples A., Elshorbagy O., Hussien S., El-Tahan A. and Peng D., (2022). The hidden power of secondary metabolites in plant-fungi interactions and sustainable phytoremediation. Front. Plant Sci., 13:1044896. doi: 10.3389/fpls.2022.1044896.

El-Hasan A., Walker F., Klaiber I., Schöne J., Pfannstiel J. and Voegele R. T., (2022). New approaches to manage Asian soybean rust (Phakopsora pachyrhizi) using Trichoderma spp. or their antifungal secondary metabolites. Meta 12:507. https://doi:10.3390/metabo12060507

El-Sobky M., Fahmi A., Eissa R. and El-Zanaty A., (2019). Genetic Characterization of Trichoderma spp. Isolated from Different Locations of Menoufia, Egypt and Assessment of their Antagonistic Ability.

J. Microb Biochem. Technol., 11(1):409. https://doi.org/10.4172/1948-5948.1000409

El-Sobky M. A., Eissa R. A., Abdel- Lateif K. S., Fahmi A. I., El- Zanaty A. M., Hassan M. M. and ElSharkawy M, M., (2024). Genetic diversity assessment of Trichoderma spp. isolated from various Egyptian locations using its gene sequencing marker, rep-PCR, and their cellulolytic activity. Egypt. J. Biol. Pest. Control., 34:1-10. https://doi.org/10.1186/S41938-024-00784-6

Fahmi A. I., Eissa R. A., El-Halfawi K. A., Hamza H. A. and Helwa M. S., (2016). Identification of Trichoderma spp. by DNA Barcode and Screening for Cellulolytic Activity. J Microb. Biochem. Technol., 8:202-209. https://doi.org/10.4172/1948-5948.1000286

Ghasemi S., Safaie N., Shahbazi S., Shams-Bakhsh M. and Askari H., (2019). Enhancement of Lytic Enzymes Activity and Antagonistic Traits of Trichoderma harzianum Using γ-Radiation Induced Mutation. J. Agr. Sci. Tech., 21(4):1035-1048.

Gupta V., Schmoll M., Herrera-Estrella A., Upadhyay R., Druzhinina I. and Tuohy M., (eds) (2014). Biotechnology and Biology of Trichoderma. Biotechnology and Biology of Trichoderma, Elsevier, 1-549. https://doi.org/10.1016/C2012-0-00434-6

Hall T., Biosciences I. and Carlsbad C., (2011). BioEdit: An important software for molecular biology. GERF Bulletin of Biosciences, 2(1):60-61.

Hermosa M., Grondona I., Iturriaga E., Diaz-Minguez J., Castro C., Monte E. and Garcia-Acha I., (2000). Molecular Characterization and Identification of Biocontrol Isolates of Trichoderma spp. Appl. Environ. Microbiol., 66 (5) :1890-1898 https://doi.org/10.1128/AEM.66.5.1890-1898.2000

Hewedy O., Abdel Lateif K., Seleiman M., Shami A., Albarakaty F. and El-Meihy R., (2020). Phylogenetic Diversity of Trichoderma Strains and Their Antagonistic Potential against Soil-Borne Pathogens under Stress Conditions. Biology, 9(8):189. https://doi.org/10.3390/BIOLOGY9080189

Hoitink H. A. J., Madden L. V. and Dorrance A. E., (2006). Systemic resistance induced by Trichoderma spp.: Interactions between the Host, the Pathogen, the Biocontrol Agent, and Soil Organic Matter Quality. Phytopathology, 96 (2): 186-189. https://doi.org/10.1094/PHYTO-96-0186

Kredics L., Büchner R., Balázs D., Allaga H., Kedves O., Racić G., Varga A., Nagy V., Vágvölgyi C. and Sipos G., (2024). Recent advances in the use of Trichoderma-containing multicomponent microbial inoculants for pathogen control and plant growth promotion. World J. Microbiol Biotechnol., 40(5):1-14. https://doi.org/10.1007/S11274-024-03965-5

Lahlali R., Ezrari S., Radouane N., Kenfaoui J., Esmaeel Q., El Hamss H, Belabess Z. and Barka E. A., (2022). Biological Control of Plant Pathogens: A Global Perspective. Microorganisms, 10(3):596 https://doi.org/10.3390/MICROORGANISMS10030596

Mukherjee P. K., Mendoza-Mendoza A., Zeilinger S. and Horwitz B. A., (2022). Mycoparasitism as a mechanism of Trichoderma- mediated suppression of plant diseases. Fungal Biol. Rev., 39:15-33. https://doi.org/10.1016/J.FBR.2021.11.004

Raja H. A., Miller A. N., Pearce C. J. and Oberlies N. H., (2017). Fungal identification using molecular tools: a primer for the natural products. Research Community. J Nat Prod., 80(3):756-770. https://doi.org/10.1021/ACS.JNATPROD.6B01085

Rajani P., Rajasekaran C., Vasanthakumari M. M., Olsson S. B., Ravikanth G. and Uma Shaanker R., (2021). Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiol Res., 242:126595 https://doi.org/10.1016/J.MICRES.2020.126595

Riffiani R., Wada T., Shimomura N., Yamaguch T. and Aimi T., (2021). An optimized method for high- quality DNA extraction medicinal fungi Mycoleptodonoides aitchisonii for whole genome sequencing. IOP Conf. Ser Earth Environ. Sci., 948(1):012032. https://doi.org/10.1088/1755-1315/948/1/012032

Sequencher® version 5.4.6 DNA sequence analysis software, Gene Codes Corporation, Ann Arbor, MI USA http://www.genecodes.com

Shahid M., Srivastava M., Kumar V., Singh A., Sharma A., Pandey S., Rastogi S., Pathak N. and Srivastava A. K., (2014). Phylogenetic diversity analysis of Trichoderma species based on internal transcribed spacer (ITS) marker. Afr. J. Biotechnol., 13(3):449-455. https://doi.org/10.5897/AJB2013.13075

Tamura K., Stecher G. and Kumar S., (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol., 38(7):3022-3027. https://doi.Org/10.1093/MOLBEV/MSAB120

Yadav M., Dubey M. K. and Upadhyay R. S., (2021). Systemic Resistance in Chilli Pepper against Anthracnose (Caused by Colletotrichum truncatum) Induced by Trichoderma harzianum, Trichoderma asperellum and Paenibacillus dendritiformis. J. Fungi, 7(4):307 https://doi.org/10.3390/JOF7040307

Downloads

Published

2024-11-26

Issue

Section

Articles