THE POTENTIAL VALUE OF DNA BARCODING OF SOME LOCAL Zea L. AND Trifolium Tourn. ex L. CULTIVARS

Authors

  • NAHID A. A. MORSI Cell Study Research Department, Field Crops Research Institute (FCRI), Agricultur- al Research Center (ARC), 9 Gamaa St., 12619, Giza
  • EHAB M. B. MAHDY National Gene Bank, Agriculture Research Center (ARC), 9 Gamaa St., 12619, Giza
  • IMAN H. NOUR Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, 21511
  • SHAFIK DARWISH IBRAHIM Agricultural Genetic Engineering Research Institution (AGERI), Agricultural Re- search Center (ARC), 9 Gamaa St., 12619, Giza
  • EHAB M. ZAYED Cell Study Research Department, Field Crops Research Institute (FCRI), Agricultur- al Research Center (ARC), 9 Gamaa St., 12619, Giza

Abstract

Genetic divergence and biodiversity are vital for food and agricultural use. Crop diversification has been challenged by the limited available research that investigating the genotypes and varieties of biodiversity plants. Fabaceae and Poaceae are the largest plant families in Egypt, and their members are widely cultivated due to their significant economic value. Six genotypes belong to Fabaceae [(two genotypes of Trifolium alexandrinum L.), and Poaceae (four genotypes of Zea mexicana (Schrad.) Kuntze)] were used to study the status of the biodiversity of cultivated crops using three DNA barcode markers, namely; matK, rbcL, and rpoC1 genes. The resulting data revealed that rpoC1 marker was successfully amplified across all the cultivars. Three genes had a barcode quality index (B30) above 0.50, and the best sequence quality was assigned to matK marker (B30= 0.66), followed by rpoC1 marker (B30= 0.57). The rbcL marker was successfully amplified only through Z. mexicana, while matK marker was amplified only through T. alexandrinum. The results provided a helpful evidence for biodiversity and could be used for subsequent crop improvement programs. The results showed that matK and rpoC1 markers had the best sequence quality and were convenient for enhancing many different areas of biodiversity.

References

Ampatzidis Y. G. and Vougioukas, S. G. (2009). Field experiments for evaluating the incorporation of RFID and barcode registration and digital weighing technologies in manual fruit harvesting. Comput. Electron. Agr. 66:166-172.

Angers-Loustau A., Petrillo M., Paracchini V., Kagkli D. M., Rischitor P. E., Puertas Gallardo A. et al. (2016). Towards Plant Species Identification in Complex Samples: A Bioinformatics Pipeline for the Identification of Novel Nuclear Barcode Candidates. PLoS ONE 11(1): e0147692. https://doi.org/10.1371/journal.pone.0147692

Annor B., Badu-Apraku B., Nyadanu D., Akromah R. and Fakorede M. A. B., (2020). Identifying heterotic groups and testers for hybrid development in early maturing yellow maize (Zea mays) for sub-Saharan Africa. Plant Breed, 139:708-716. https://doi.org/10.1111/pbr.12822

Antil S., Abraham J. S., Sripoorna S., Maurya S., Dagar J., Makhija S., Bhagat P., Gupta R., Sood U., Lal R. and Toteja R., (2023). DNA barcoding, an effective tool for species identification: a review. Molecular Biology Reports, 50 (1): 761-775.

Bondoc Orville (2013). DNA barcoding of common livestock breeds and crossbreeds (Class Mammalia) in the Philippines Asia Life Sciences 22 (2): 641-657.

Bondok A. T., (2019). Using DNA Barcoding for Fingerprinting of Two Important Forage Crops Varieties (Alfalfa and Egyptian clover). Journal of Agricultural Chemistry and Biotechnology, 10 (10): 195- 201.

Cai Z., Guisinger M., Kim H., Ruck E., Blazier J. C., Mcmurtry V., et al. (2008). Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. Journal of Molecular Evolution, 67(6):696-704. https://doi.org/10.1007/s00239-008-9180-7

CBOL Plant Working Group, (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12794-12797.

Chase M. W. and Hills H. H., (1991). Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon, 40, 215-220.

Cheng Q., Wei T. and Farbiak L., (2020). Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15: 313-320. https://doi.org/10.1038/s41565-020-0669-6

Desalle R., Egan M. G. and Siddall M., (2005). The unholy trinity: taxonomy, species delimitation and DNA barcoding Philos Trans R Soc Lond B Biol. Sci. Oct 29,360(1462) 1905-16. doi: 10. 1098/rstb.2005. 1722. PMID: 16214748, PMCID: PMC1 609226.

El-Banhawy A., Nour I. H., Acedo C., ElKordy A., Faried A., Al-Juhani W., Gawhari A. M., Olwey, A. O. and Ellmouni F. Y., (2021). Taxonomic revisiting and phylogenetic placement of two endangered plant species: Silene leucophylla Boiss. and Silene schimperiana Boiss. (Caryophyllaceae). Plants, 10(4), p.740.

EL-Banna A. N. and Ghazy Mona M. F., (2017). Assessment of Genetic Components and Genetic Diversity of Six Egyptian Clover (Trifolium alexandrinum L.) Genotypes Using ISSR and URP Markers. Egypt. J. Genet. Cytol., 46 (2): 313-328. (www. esg.net.eg). DOI: 10.21608/ejgc.2018.9206.

Enan M. R. and Ahamed A., (2014). DNA barcoding based on plastid matK and RNA polymerase for assessing the genetic identity of date (Phoenix dactylifera L.) cultivars. Genet Mol Res. 14, 13(2):3527-356. doi: 10.4238/ 2014.Feb.14.2. PMID:24615105.

FAO - Food and agriculture organization of the United Nations (2006). Guidelines for soil description, 4th edn. Food and Agriculture Organization of the United Nations, Rome.

FAO - Food and agriculture organization of the United Nations/ International plant genetic resources institute (1994). Genebank Standards. Food and agriculture organization of the United Nations/International plant genetic resources institute, Rome.

Fazekas A. J., Burgess K. S., Kesanakurti P. R., Graham S. W., Newmaster S. G., Husband B. C., et al. (2008). Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well. PLoS ONE 3(7): e2802. https://doi.org/10.1371/journal.pone.0002802

Geary J. and Bubela T., (2019). Governance of a global genetic resource commons for non-commercial research: A case-study of the DNA barcode commons. International Journal of the Commons, 13(1), 205-243. DOI: http://doi.org/10.18352/ijc.859

Jeanson M. L., Labat J. N. and Little D. P., (2011). DNA barcoding: a new tool for palm taxonomists? Annals of Botany, 108: 1445-1451.

Krawczyk K., Nobis M. and Myszczyński K. et al., (2018). Plastid super-barcodes as a tool for species discrimination in feather grasses (Poaceae: Stipa). Sci. Rep 8, 1924. https://doi.org/10.1038/s41598-018 -20399-w

Kress W. J., (2017). Plant DNA barcodes: Applications today and in the future. Jnl of Sytematics Evolution, 55: 291-307. https://doi.org/10.1111/jse.12254

Liang S., Lin F. and Qian Y., et al. (2020). A cost-effective barcode system for maize genetic discrimination based on bi-allelic InDel markers. Plant Methods 16, 101. https://doi.org/10.1186/s13007-020-00644-y

Little D. P. (2010). A unified index of sequence quality and contig overlap for DNA barcoding. Bioinformatics, 26: 2780-2781.

Madesis P., Ganopoulos I., Ralli P. and Tsaftaris A., (2012). Barcoding the major Mediterranean leguminous crops by combining universal chloroplast and nuclear DNA sequence targets. Genetics and Molecular Research, 11 (3): 2548-2558.

Mahdy E. M. B. (2018). Genetical studies on DNA storage and preservation on some accessions of cowpea plant. PhD thesis. Cairo, Egypt. Al- Azhar University pp. 139.

Mahdy E. M. B. and Ahmad H., (2023). A study of Corchorus L. diversity in Egypt using high-throughput phenotyping platform (HTPP): an Egyptian gene bank example. Genet Resourc. Crop Evol., https://doi.org/10.1007/s10722-023-01551-6

Mahdy E. M. B., El-Shaer H. F. A., Sayed A. I. H. and El-Halwagi A., (2021). Genetic Diversity of Local Cowpea (Vigna spp. (L.) Walp.) Accessions Cultivated in Some Regions of Egypt. Jordan Journal of Biological Sciences, 14 (4): 775-789.

Mahdy E. M. B. and Rizk R.M., (2023). Genetic variation of arta populations (Calligonum polygonoides subsp. Comosum) in Egypt: gene-pools for biodiversity and afforestation. Journal of water and land development, 56 (I-III): 81-90. 10.24425/ jwld.2023.143748.

Mahdy E. M. B., Sayed A. I. H., El-Shaer H. F. A. and El-Halwagi A., (2017). Comparative Study of DNA Preservation under Various Conditions on Local Egyptian Cowpea Germplasm. Int. J. Pharm Sci. & Scient Res. 3:5, 65-71. DOI: 10.25141/2471-6782-2017-5.0064.

Mousavi‐Derazmahalleh M., Bayer P. E., Hane J. K., Valliyodan B., Nguyen H. T., Nelson M. N., Erskine W., Varshney R. K., Papa R. and Edwards D., (2019). Adapting legume crops to climate change using genomic approaches. Plant, Cell & Environment, 42 (1): 6-19.

Raza A., Razzaq A., Mehmood S. S., Zou X., Zhang X., Lv Y. and Xu J., (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8 (2): p.34.

Selvaraj D., Park J., Chung M., Cho Y., Ramalingam S. and Nou I., (2013). Utility of DNA Barcoding for Plant Biodiversity Conservation. Plant Breeding and Biotechnology. 1:320-332.https://doi.org/10.9787/PBB.2013.1.4.320

Steiner J. J. (2006). Molecular phylogenetics of the clover genus (Trifolium--Leguminosae). Molecular Phylogenetics & Evolution., 39(3):688- 705. https://doi.org/10.1016/j.ympev2006.01.004

Sveinsson S. and Cronk Q., (2014). Evolutionary origin of highly repetitive plastid genomes within the clover genus (Trifolium). BMC Evolutionary Biology, 14(1):228. https://doi.org/10.1186/s12862-014-0228-6

Ude V. C., Brown D. M., Stone V. and Johnston H. J., (2019). Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials J. Nanobiotechnol., 17 (1): p. 70.

Xiong Y., Xiong Y., He J., Yu Q., Zhao J., Lei X., Dong Z., Yang J., Peng Y., Zhang X. and Ma X., (2020). The Complete Chloroplast Genome of Two Important Annual Clover Species, Trifolium alexandrinum and T. resupinatum: Genome Structure, Comparative Analyses and Phylogenetic Relationships with Relatives in Leguminosae. Plants, 9, 478. https://doi.org/10.3390/plants9040478

Yang Jia, Lucía Vázquez, Xiaodan Chen, Huimin Zhang Li, Hao Liu Zhanlin and Zhao Guifang, (2017). Development of Chloroplast and Nuclear DNA Markers for Chinese Oaks (Quercus Subgenus Quercus) and Assessment of Their Utility as DNA Barcodes. Frontiers in Plant Science, vol. 8 DOI=10.3389/ fpls. 2017.00816.

Zayed E. M., Metwali E. M. R., Khafaga A. F. and Azab M. M., (2011). Field performance of commercial Egyptian clover (Trifolium alexandrinum L.) cultivars under high temperature condition. Range Mgmt. & Agroforestry 32 (2): 87- 91.

Zeinalabedini Khoshkholgh M., Sima N. A., Ghaffari M. R., Ebadi A. and Farsi M., (2021). Application of DNA barcodes and spatial analysis in conservation genetics and modeling of Iranianb Salicornia genetic resources. PLoS ONE 16(4): e0241162. https://doi.org/10.1371/journal.pone.0241162

Zhi-Fang Liu, Ma Hui, Xiu-Qin Ci, Lang Li, Yu Song, Bing Liu, Hsi-Wen Li, Shu-Li Wang, Xiao-Jian Qu, Jian Lin Hu, Xiao-Yan Zhang, John G Conran, Alex D. Twyford, Jun-Bo Yang, Peter M., Hollingsworth and Jie Li, (2021). Can plastid genome sequencing be used for species identification in Lauraceae?. Botanical Journal of the Linnean Society, 197 (1): 1-14.

Downloads

Published

2024-08-28

Issue

Section

Articles