BIODIVERSITY STUDY OF Zilla spinosa (L.) IN EGYPT

Authors

Abstract

Zilla is a monospecific genus in the flora of Egypt represented by Zilla spinosa. The field observations of Zilla spinosa populations showed the presence of a high degree of morphological diversity. The taxonomic problem of this species is mainly related to its confused infra-specific treatments in different floras. Our taxonomic revision of Z. spinosa was carried out on 15 recently collected populations covered the geographical range of this species in Egypt, in addition to 33 old herbarium specimens from different localities dating to nine decades ago. Herbarium specimens and recently obtained populations were grouped together by morphological studies under two distinct morphotypes depending mainly on fruit characters. SCoT-PCR technique was used to study the genetic diversity of the two morphotypes and separate two main clusters, and according to molecular results we treated the morphotypes as two distinct subspecies: subsp. spinosa, and subsp. biparmata. Pollen grains characters of the two subspecies were studied for the first-time using SEM. Chromosome numbers of the two subspecies of Z. spinosa were counted. The chromosome lengths and centromeric positions as obtained from mitotic chromosomal preparations were used to establish the first report of the two examined subspecies karyotype.

References

Abdel-Khalik K., Van Der Berg R. G., Van Der Maesen L. J. G., El- Hadidi M. N., (2002). Pollen morphology of some tribes of Brassicaceae from Egypt and its systematic implications. Feddes Repert 113: 211-223. https://doi.org/10.1002/1522-239X(200208)113:3/4<211::AID-FEDR211>3.0.CO;2-A

Al-Qahtani H., Alfarhan A. H. and Al- Othman Z. M., (2020). Changes in Chemical Composition of Zilla spinosa Forssk. Medicinal Plants grown in Saudi Arabia in response to Spatial and Seasonal Variations. Saudi J. Biol. Sci. 27: 2756-2769. https://doi.org/10.1016/j.sjbs.2020.06.035

Al-Shehbaz I. A. and Al-Omar M. M., (1982). In: A. Löve (ed.), IOPB

chromosome number reports. LXXVI. Taxon 31: 574-598.

Amin A. (1973). Cytological studies on some Egyptian plants. United Arab Repub. J. Bot., 16: 501-506.

Anchev M. and Deneva B., (1997). Pollen morphology of 17 species from family Brassicaceae (Cruciferae). Phytol. Balcanica 3: 75-82.

Anderson J. K. and Warwick S. I., (1999). Chromosome number evolution in the tribe Brassiceae (Brassicaceae): evidence from isozyme number. Pl. Syst., Evol. 215: 255-285.

Appel O. and Al-Shehbaz I. A., (2003). Cruciferae. In: K. Kubitzki and C. Bayer (eds.), Families and Genera of Vascular Plants. 5: 75-174. Springer-Verlag, Berlin, Heidel- berg.

Arora A. and Modi A., (2011). Pollen morphology of some desertic crucifers. Indian J. Fundam. Appl. Life Sci. 1: 11-15.

Boulos L. (1999). Flora of Egypt (Azollaceae-Oxalidaceae). Al-Hadara Pub., Cairo, Egypt, 1: 419.

Cheo T., Guo R., Lan Y., Lou L., Kuan K. and Zheng-xi A., (1987). Cruciferae.-In: C. Taiyien (ed.), Fl. Reipubl. Popularis Sin., 33: 1-483.

El-Menshawy B., Karawya M., Wassel G., Reish J. A. and Kjaer A., (1980). Glucosinolates in the Genus Zilla (Brassicaceae). J. Nat. Prod. 43: 534-536.

Erdtman G. (1969). Handbook of Palynology an Introduction to the Study of Pollen Grains and Spores. Munisgard, Kopenhagen, pp. 73.

Erdtman G. (1986). Pollen morphology and plant taxonomy: Angiosperms. New York: E. J. Brill.

Gabr D. G. I. (2018). Taxonomic Importance of Pollen Morphology for Some Species of Brassicaceae. Pak. J. Biol. Sci., 21 (5): 215-223.

Guerra M. (2008). Chromosome numbers in plant cytotaxonomy: Concepts and implications. Cytogen. Genome Res.120: 339-350. doi: 10.1159/000121083. PMID: 18504363

Hammer A. T., David A. T. H. and Paul D. R. (2001). PAST: Palaeontological statistics software package for education and data analysis. Palaeontol. Electron, 4: 9.

Harberd D. J. (1972). A contribution to the cytotaxonomy of Brassica (Cruciferae) and its allies. Bot. J. Linn. Soc., 65: 1-23.

Heneidy S. Z. and Bidak L. M., (2001). Multipurpose plant species in bisha, Asir region Southwestern Saudi Arabia. J. King Saud Univ., 13: 11-26.

Ibrahim M. A., Bekhit M., Hassan N., Refaat M. and El-Akkad T. (2019a), C-Banding Karyotype and Molecular Characterization on Cumin, Caraway and Coriander. Mol. Biol., 8: 229.

Ibrahim S. D., Abd El-Hakim A. F., Ali H. E. and Abd El-Maksoud R. M., (2019b). Genetic differentiation using ISSR, SCoT and DNA Barcoding for Quinoa genotypes. Arab J. Biotech., 22(2): 103-118.

Jiang L. F, Qi X., Zhang X. Q., Huang L. K., Ma X. and Xie W. G., (2014). Analysis of diversity and relationships among orchardgrass (Dactylis glomerata L.) accessions using start codon-targeted markers. Genet. Mol. Res., 13: 4406-4418.

Karawya M. S., Wassel G. M. and El- Menshawi B. S., (1974). Phytochemical study of Zilla spinosa (Turra) Prantl. General analysis. Carbohydrates and lipids. Pharmazie, 29: 60-61.

Khattab H., Kh. I., El-Shishtawy H. M., Musallam H. A., Morsy A. A. and Almarid Z. D. S., (2014). Seasonal and spatial variations in the genetic diversity of Zilla spinosa (L.) inhabiting Wadi Hagul as revealed by RAPD markers. Egypt. J. Exp. Biol. (Bot.), 10(2): 115-124.

Linnaeus C. (1767). Mantissa Plantarum. Generum Editionis vi et Specierum Editionis ii. Harvard University Herbarium, 2(12): 96.

Maire R. (1967). Cruciferae. Flore de l’Afrique du Nord. 13: 5-365.

Paris.

Murín A. and Chaudhri I. I., (1970. In: A. Löve (ed.), IOPB chromosome number reports. XXVI. Taxon 19: 264-269.

Omaraa E. A., El-Toumyb S. A., Shabanaa M. E., Farraga A. H., Nadac S. A. and Shafeea N. (2018). The antifibrotic effect of Zilla spinosa extracts targeting apoptosis in CCl4-induced liver damage in rats. JASMR, 13:129-143. DOI:10.4103/jasmr.jasmr_29_18

Punt W., Blackmore S., Nilsson S. and Le Thomas Α., (1994). Glossary of Pollen and Spore Terminology. - LPP Contri. Ser. 1., LPP Found, Utrecht.

Rollins R. C. and Banerjee U. C., (1979). Pollen of Cruciferae. The Busey Institution of Harvard University, Cambridge (MA), pp. 33-64.

Schulz O. E. (1923). Cruciferae- Brassiceae. Part 2. Pp. 1-100 in A. Engler (ed.) Pflanzenreich IV. 105 (Heft 84). Verlag von Wilhelm Engelmann, Leipzig.

Täckholm V. (1974). Student’s Flora of Egypt, 2nd edn. Cairo University Press, Egypt, p: 196-197.

Tiwari G., Singh R., Singh N., Choudhury D. R., Paliwal R., Kumar A. and Gupta V. (2016). Study of arbitrarily amplified (RAPD and ISSR) and gene targeted (SCoT and CBDP) markers for genetic diversity and population structure in Kalmegh [Andrographis paniculata (Burm. f.) Nees]. Ind Crop Prod 86: 1-11.

Warwick S. I. and Al-Shehbaz I. A. (2006). Brassicaceae: chromosome number index and database on CD- Rom. Plant Systematics and Evolution, 259: 237-248.

Warwick S. I. and Anderson J. K. (1993). Guide to the wild germplasm of Brassica and allied crops. Part II. Chromosome numbers in the Tribe Brassiceae (Cruciferae). Agric. Canad. Res. Branch Techn. Bull. Ottawa, Canada, pp. 22.

Xiong F. Q., Zhong R. C., Han Z. Q., Jiang J., He L. Q., Zhuang W. J. and Tang R. H. (2011). Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol. Biol. Rep., 38: 3487-3494.

Zeng B., Zhang Y., Huang L., Jiang X., Luo D. and Yin G. (2014). Genetic diversity of orchardgrass (Dactylis glomerata L.) germplasms with resistance to rust diseases revealed by start codon targeted (SCoT) markers. Biochem Syst Ecol 54: 96-102.

Zohary M. (1966). Flora Palaestina, The Israel Academy of Sciences and Humanities.

Downloads

Published

2024-03-23

Issue

Section

Articles