Genetic Characterization and Relationships Among Egyptian Cotton Varieties as Revealed by Biochemical and Mecular Markers

Authors

  • B. E. ABDEL-FATTAH Genetics Department, Faculty of Agriculture, Assiut University, Egypt

Abstract

Cotton is an economic plant of world importance. It is the world's leading textile fiber crop and it is also a source of secondary products such as oil, live-stock feed (cotton seed cake) and cellulose (Anderson, 1999 and Frelichowski et al., 2006).
Assessment of genetic markers and diversity form an integral part of any successful breeding program. Morphological features are indications of the genotype but are represented by only a few loci because there are not a large enough number of characters available. Moreover, they can also be affected by environmental factors and growth practices. To overcome the limitations associated with morphological markers, various biochemical and molecular marker techniques have come up in recent years. Biochemical markers such as isozymes have been used to study the genetic distances and estimate the level of genetic variability of cotton varieties and accessions (Wendel et al., 1989; Percy and Wendel, 1990; Abdel-Tawab et al., 1990 & 1993; Melchinger et al., 1991; Wendel et al., 1992; Sukumar and Allan, 1998; Farooq et al., 1999). However, isozyme analysis has certain limitations due to the availability of a limited number of marker loci, a general lack of polymorphism for these loci in elite breeding materials, and the chance of variability in banding patterns being due to plant development (Tanksley et al., 1989). Protein markers have also been used to identify different cotton species, varieties and lines (Khan, 1991; Goyal, 1993; Renata et al., 2004; Murtaza et al., 2005; Yunuskhanov et al., 2007; Kurbanbaev et al., 2008) DNA based molecular markers such as RFLP, AFLP, SSR, ESTs, SNP and RAPD have been widely used in genetic analyses, breeding studies and investigations of genetic diversity and the relationship between cultivated species and their wild parents. They have several advantages, including high polymorphism and independence from effects related to environmental conditions and the physiological stage of the plant. Among these marker techniques, the randomly amplified polymorphic DNA (RAPD) markers generated by polymerase chain reaction (PCR) is technically the simplest, less expensive, fast and does not require prior knowledge of the target sequences for the design of primers (Williams et al., 1990; Welsh and McClelland, 1990). The RAPD markers have already been used in cotton for the assessment of genetic variability, diversity and fingerprinting cotton genotypes (Pillay and Myers, 1999; Jing et al., 2000; Hussein et al,. 2002, 2006, and 2007; Muhammad et al., 2009; Zahid et al., 2009) as well as for the detection of variation between closely related cultivars (Multani and Lyon 1995; Rahman et al., 2002; El-Defrawy et al., 2004; Masoud et al., 2007).
The objectives of this investigation were to: (1) determine the genetic differences between nine Egyptian cotton varieties using six isozyme systems, protein patterns and 10 RAPD markers, (2) identify variety specific RAPD markers in the tested genotypes, and (3) assess the genetic distance and relationships among these varieties.

References

Abdel-Tawab, F. M., E. M. Fahmy, M. A. Rashed, A. El-Soudy and M. O. Ismael (1990). Use of seed protein PAGE, esterase isozyme patterns and immunodiffusion analysis to differentiate between cotton cultivars of two different species. Egypt. J. Genet. Cytol., 19: 37-46.

Abdel-Tawab, F. M., E. M. Fahmy, M. O. Ismail and F. M. El-Domyati (1993). Application of electrophoretic analysis in cultivar identification in cotton (Gossypium barbadense L.). 4th Conf. Agric. Dev. Res., Ain-Shams Univ., Cairo, Feb. 13-18, Annals Agric. Sci., Sp. Issue, 2, 489-503.

Adawy, S. S. (2007). An Evaluation of the utility of Simple Sequence Repeat loci (SSR), Expressed Sequence Tags (ESTs) and Expressed Sequence Tag Microsatellites (EST-SSR) as Molecular Markers in Cotton. Journal of Applied Sciences Research, 3: 1581-1588.

Anderson, C. G. (1999). Cotton marketing. In: Smith, C.W, Cothren, J.T.(eds) Cotton: Origin, History, Technology and Production. Wiley, New York, pp: 659-679 (C.F. Frelichowski et. al., 2006).

Arus, P. (1983). Genetic purity of commercial seed lots. In: Tanksley, S. D. and Orton, T. J. (Eds.) Isozymes in plant genetics and breeding, Part A, pp. 415-423. Elsevier Sci. Publishers B. V., Amsterdam.

El-Defrawy, M. M., Mervat M. Hashad and E. N. Elsayed (2004). Molecular polymorphism in egyptian cotton (Gossypium barbadense L.). Assiut Journal of Agricultural Science, 35: 83-96.

Esmail R. M., J. F. Zhang and A. M. Abdel-Hamid (2008). Genetic Diversity in Elite Cotton Germplasm Lines Using Field Performance and Rapd Markers. World Journal of Agricultural Sciences, 4: 369-375.

Farooq, S., N. Iqbal and A. A. Zaidi (1999). Isozyme markers in cotton breeding 1. Standardization of different isozyme systems for identification of different cultivars of cotton (Gossypium hirsutum). Pakistan Journal of Botany, 31: 5-20.

Frelichowski, Jr., M. B. Palmer, D. Main, J. p. Tomkins, R. G. Cantrell, D. M. Stelly, J. Yu, R. J. Kohel and M. Uloa (2006). Cotton genome mapping with new microsatellites from Acala "Maxxa" BAC-ends. Mol. Gen. Genomics, 275: 479-491.

Goyal, K.C. (1993). Identification of some cotton cultivars using PAGE. Indian J. plant physiol., 35: 405-407.

Hadrys, H., M. Balick and B. Schiewater (1992). Application of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol., 1: 55-60.

Hussein, Ebtissam H. A., A. Amina Mohamed, S. Attia and S. S. Adawy (2006). Molecular characterization and genetic relationships among cotton genotypes 1-RAPD, ISSR and SSR analysis. Arab J. Biotech., 9: 313-328.

Hussein, Ebtissam H. A., M. H. A. Osman, M. H. Hussein and S. S. Adawy (2007). Molecular Characterization of Cotton Genotypes using PCR-based Markers. J. Appl. Sci. Res., 10: 1156-1169.

Hussein, Ebtissam H. A, M. Sh.Al-Said, H. A. El-Itriby, and M. A. Madkour (2002). Genotyping Egyptian Cotton Varieties (G. barbadense)

using molecular markers. (Poster) Biotechnology and Sustainable Development Voices of the South and North Conf. Held at the Bibliotheca Alexandrina Conference Center, March 16-20, Alexandria, Egypt.

Jing, K. Z., S. Ji-Zhong, Z. Jin-Fa, N. Yi-Chun and L. Jin-Lan (2000). Genetic diversity evaluation of some Chinese elite cotton varieties with RAPD markers. Acta Genetica Sinica, 27: 817-823.

Kernodle, S. P., R. E. Cannon and J. G. Scandalios (1993). Rapid and simple phage DNA isolation. Biotechniques, 14:360:362.

Khan, I. A. (1991). Electrophoretic analysis of seed proteins of various cotton varieties of different geographic areas. Pak. J. Agri. Sci., 28: 110-116.

Kumar, A., P. Pushp-Angadan and S. Mehrotra (2003). Extraction of High-Molecular-Weight DNA From Dry Root Tissue of Berberis lycium Suitable for RAPD. Plant Molecular Biology Reporter, 21: 309a-309d.

Kurbanbaev, I. Zh., D. Yu. Ataev, and Sh. Yunuskhanov (2008). Protein Markers for Identification of Different Species and Varieties of Cotton. Applied Biochemistry and Microbiology, 45: 432-437.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.

Masoud, S., Zahra, H. Shahriari, H. Rokneizadeh and Zahra Noor-mohammadi (2007). RAPD and cytogenetic study of some tetraploid Cotton (Gossypium hirsutum L.) cultivars and their hybrids. Cytologia, 72: 77-82.

Melchinger, A. E., M. M. Messmer, M. Lee, W. L. Woodman and K. R. Lamkey (1991). Diversity and relationships among US maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci., 31: 669-678.

Muhammad, A., M. Ur. Rahman, J. I. Mirza and Y. Zafar (2009). Parentage confirmation of cotton hybrids using molecular markers. Pak. J. Bot., 41: 695-701.

Multani, D. S. and B. R. Lyon (1995). Genetic fingerprinting of Australian cotton cultivars with RAPD markers. Genome, 38: 1005-1008.

Murray, M. G. and W. F. Thompson (1980). Rapid isolation of high molcular weight plant DNA. Nucleic Acids Research, 8: 4321-4325.

Murtaza, N., M. Kitaoka and G. M. Ali (2005). Genetic differentiation of cotton cultivars by polyacrylamide gel electrophoresis. Journal Central Europe Agriculture, 6: 69-76.

Nei, M. and W. H. Li (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA., 76: 5269-5273.

Percy, R. G. and J. F. Wendel (1990). Allozyme envidence for the origin and diversification of (Gossypium barbadense L.). Theor. Appl. Genet., 79: 529-542.

Pillay, M. and G. O. Myers (1999). Genetic diversity in cotton assessed by variation in ribosomal RNA genes and AFLP markers. Crop Sci., 39: 1881-1886.

Powell, W., M. Morgante, C. Andre, M. Hanafey, J. Vogel, S. Tingey and A. Rafalski (1996). The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2: 225-238.

Rahman, M., D. Hussain and Y. Zafar (2002). Estimation of divergence among elite cotton cultivars-genotypes by DNA fingerprinting technology. Crop Sci., 42: 2137-2144.

Rana, M. K. and K. V. Bhat (2005). RAPD markers for genetic diversity study among India cotton cultivars. Current Science, 88: 1956-

Renata, S. M., M. D. G. G. C. Vieira, E. N. Mann and M. C. Alves (2004). Varietal diversity in cotton based on seed protein profile extracted at high temperature. Revista Ciência Agronômica, Vol. 35, Número Especial, Out., 227-231.

Ryan, S. A. and W. R. Scowcroft (1987). A somaclonal variant of wheat with additional B-amaylase isozymes. Theor. Appl. Genet., 73:

-464.

Saghai-Maroof, M. A., K. M. Soliman, R. A. Jorgensen and R. W. Allard (1984). Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc. Natl. Acad. Sci., 81: 8014-8018.

Sukumar, S. and Z. Allan (1998). Genetic diversity and phylogenetic relationships in cotton based on isozyme markers. Journal of Crop Production, 1: 79-93.

Swofford, D. L. and G. J. Olson (1990). Phylogeny reconstruction. In: Hillis DM, Moritz C (eds) Molecular Systematics. Sinauer Associates, Sunderland, Massachusetts.

Tanksley, S. D., N. D. Young, A. H. Paterson and M. W. Bonierbale (1989). RFLP mapping in plant breeding: new tools for an old science. Biotechnology, 7: 257-264.

Tanksley, S. D. and T. J. Orton (1986). “Isozymes in plant genetics and breeding”. Part A (eds.), Elsevier Sci. Puplishers B. V., New York, pp. 500.

Welsh, J. and M. McClelland (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res., 18: 7213-7218.

Wendel, J. F., J. M. Stewart and J. H. Retting (1989). Genetic diversity, introgression and independent domestication of old world cultivated cottons. Amer. J. Bot., 67: 1795-1806.

Wendel, J. F., C. L. Brubaker and A. E. Percival (1992). Genetic diversity in Gossypium hirsutum and the origin of upland cotton. American Journal of Botany, 97: 1291-1310.

Williams, J. G. K., A. R. Kublik, K. J. Livak, J. A. Rafaliski and S. V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.

Yunuskhanov, Sh. Yu., D. Yu. Ataev and I. Zh. Kurbanbaev (2007). Species-specific Features of the Protein Patterns of Diploid Cotton Seeds with A and D Genomes and of Some Amphidiploids. Russian Journal of Genetics, 43: 404-410.

Zahid M., F. Raheel, A. S. Dasti, S. Shahzadi, M. Athar and M. Qayyum (2009). Genetic diversity analysis of the species of Gossypium by using RAPD markers. African Journal of Biotechnology, 8: 3691-3697.

Downloads

Published

2016-01-11

Issue

Section

Articles