PHYLOGENETIC ANALYSIS OF EGYPTIAN FABA BEAN CULTIVARS (Vicia faba) AS REVEALED BY SRAP AND SSR MARKERS
Abstract
SRAP and SSR markers were employed efficiently to discover the genetic distinction and phylogenetic relationships among five cultivars of Egyptian Faba bean (Giza 716, Giza 843, Sakha 4, Mariot 2 and Nubaria 5). SRAP primers exhibited a total of 70 bands and 35 (50%) were polymorphic bands. All the SSR markers exhibited clear bands; five SSR markers (KVFG460, KVFT1400, KVFT5761, KVFT906, and KVFT1913) gave two bands, while KVFG588 marker produced only one band. The tested SSR markers produced eleven bands, whereas 27 % of these bands were polymorphic. Each of SRAP and SSR markers established specific phylogenetic relationships.
References
Abdalla F., Shafik M., Abd El-Mohsen M., Saleh Heba., Khater M. and Elashtokhy M., (2020). determination of the similarity among faba bean (vicia faba) and its orobanche parasite using ISSR molecular markers. Plant Archives Vol. 20(1):3076-3083.
Akash M., Al-awaida W., Ateyyeh A., Al-debei H., Saleh M., Zatimeh A., Salameh N., Alawin M. and Hasan S., (2017). Exploring genetic variations in faba bean (vicia faba L.) accessions using newly developed EST-SSR markers.. Pak. J. Bot., 49(2): 667-672.
Alghamdi S., Al-Faifi S., Migdadi H., Altaf Khan M., EL-Harty E. and Ammar M., (2012). Molecular Diversity Assessment Using Sequence Related Amplified Polymorphism (SRAP) Markers in Vicia faba L. Int. J. Mol. Sci. 13:16457-16471. doi:10.3390/ijms131216457
Ariss J. and Vandemark J., (2007). Assessment of genetic diversity among nondormant and semidormant alfalfa populations using sequence-related amplified polymorphisms. Crop.Sci. 47:2274-2284.
Asfaw B., Dagne K., Wakayo G., Kemal S. and Muleta K., (2018). Genetic diversity study of Ethiopian Faba bean (Vicia faba L.) varieties based on phenotypic traits and inter simple sequence repeat (ISSR) markers. Afr. J. Biotechnol. Vol. 17(13): 433-446. DOI:10.5897/AJB2017.16331
Castonguay Y., Cloutier J., Bertrand A., Michaud R. and Laberge S., (2010). SRAP polymorphisms associated with superior freezing tolerance in alfalfa (Medicago sativa spp. sativa). Theor. Appl. Genet. 120:1611-1619.
Cieplak M., Oko´n S. and Werwi´nska K., (2021). Genetic Similarity of Avena sativa L. Varieties as an Example of a Narrow Genetic Pool of Contemporary Cereal Species. Plants. 10(7): 1424. https://doi.org/10.3390/plants10071424
Elshaer H. and Hellal A., (2020). Genetic Diversity Based on SSR Markers and Morphological Analysis of fa- ba bean (Vicia faba L.) in Egypt. Taeckholmia 40: 130-142.
Elshafei A., Amer M., Elenany M. and Helal A., (2019). Evaluation of the genetic variability of faba bean (Vicia faba L.) genotypes using agronomic traits and molecular markers. Bulletin of the National Research Centre. 43:106 https://doi.org/10.1186/s42269-019-0145-3
Esposito A., Martin A., Craverom P. and Cointry E., (2007). Characterization of pea accessions by SRAP’s markers. Sci. Hort., 113: 329-335.
Essa M., Wafa A., Mahgoub I., Hassanin A., Al-Khayri M., Jalal S., El- Moneim A., ALshamrani M., Safhi A., Eldomiaty S., (2023). Assessment of Eight Faba Bean (Vicia faba L.) Cultivars for Drought Stress Tolerance through Molecular, Morphological, and Physiochemical Parameters.
Sustainability. 15:1-14. https://doi.org/10.3390/su15043291
Hammer ?., Harper D. and Ryan P., (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, Vol. 4: (1) 4-9.
Khalifa K., Ibrahim S., El-Garhy Hoda., Moustafa M., Maalouf F., Alsamman A., Hamwieh A. and El Allali A., (2021). Developing a new genic SSR primer database in faba bean (Vicia faba L.) Published J. Appl. Genetic, 62:373-387, https://doi.org/10.1007/s13353-021-00626-3
Li Y. and Quiros F., (2001). Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction, its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103: 455-461.
Maalouf F., Khalil S., Ahmed S., Akintunde A., Kharrat M. and Shama’a K., (2011). Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crops Res., 24:288-294. doi:10.1016/j.fcr.2011.06.005
Mulualem T., Dessalegn T. and Dessalegn Y., (2012). Participatory varietal selection of faba bean (Vicia faba L.) for yield and yield components in Dabat district, Ethiopia. Wud-pecker J. Agric. Res., Vol. 1 (7): 270-274.
Rana M., Singh P. and Bhat K., (2009). Fingerprinting Indian lentil (Lens culinaris ssp. culinaris Medik.) Cultivars and Landraces for Diversity Analysis Using Sequence-Related Amplified Polymorphism (SRAP) Markers. J. Plant Biochemistry & Biotechnology Vol. 16 (1): 53-57. DOI: 10.1007/BF03321929
Randhawa H., Bona L. and Graf R., (2013). Triticale Breeding— Progress and Prospect.(pp 15-32) DOI 10.1007/978-3-319-22551-7
Rebaa Feten., Ghassen A., Aouida Marwa, Abdelkarim Souhir., Aroua Ibtissem., Muhovski Y., Baudoin J., M'hamdi M., Sassi K. and Jebara M., (2017). Genetic variability in Tunisian populations of faba bean (Vicia faba L. var. major) assessed by morphological and SSR markers. Physiol. Mol. Biol. Plants., 23(2):397-409. DOI: 10.1007/s12298-017-0419-x
Salazar-Laureles M., Pérez-L?pez D., Gonz?lez-Huerta A., V?zquez- Garc?a L. and Valadez-Moctezuma E., (2015). Genetic variability analysis of faba bean accessions using Inter-simple sequence repeat (ISSR) markers. Chil. J. Agric. Res., 75(1):1-9. doi.org/10.4067/S0718-58392015000100017
Tahir N., Omer D., Lateef D., Ahmad D., Salih S. and Hiwa Khal L., (2019). Diversity and Population Structure Analysis of Faba Bean (Vicia faba L.) Accessions Using SSR Markers. J. Agr. Sci. Tech., Vol. 21(2): 463-474.
Wang F., Zong P., Guan T., Yang L. and Sun M., (2012). Genetic diversity and relationship of global faba bean (Vicia faba L.) germplasm revealed by ISSR markers. Theor. & Appl. Genet., 124:789-797. doi:10.1007/s00122-011-1750-1
Zhang J., Song Q., Cregan P. B., Nelson R. L., Wang X., Wu J. and Jiang Guo-Liang, (2015). Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics, 16(1): 217 doi:10.1186/s12864-015-1441-4