CLONING OF WUB3a GENE (DROUGHT STRESS TOLERANT GENE) ISOLATED FROM Triticum aestivum

Authors

  • O. E. EL-SAYED Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth ST, Postal code 12622, Dokki, Cairo
  • S. A. M. KHATTAB Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth ST, Postal code 12622, Dokki, Cairo
  • A. M. F. AL-ANSARY Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth ST, Postal code 12622, Dokki, Cairo
  • HAYAM F. IBRAHIM Genetics and Cytology Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth ST, Postal code 12622, Dokki, Cairo

Abstract

The (ubiquitin-conjugating enzymes) E2s plays important role in response to various stresses in the plant, found in eukaryotes. The wub3a drought-tolerant gene coding to the E2 ubiquitin enzyme was isolated from the cDNA of double haploid 4 (DH4) genotype (triticum aestivum) under drought stress 30% PE and sequenced with 234bp complete open reading frame. The gene was deposited at GenBank under accession no. MW344069 and cloned in pBi121 expression vector and transformed in E. coli DH5α for preparing to transformation in the plant. The results illustrated that there is a different nucleotide sequence in the wub3a gene and the other sequence in GenBank while the translated protein was the same sequence. The gene requires more studies in the future.

References

Ahn M. Y., Oh T. R., Seo D. H., Kim J. H., Cho N. H. and Kim W. T. (2018). Arabidopsis group XIV ubiquitin-conjugating enzymes AtUBC32, AtUBC33, and AtUBC34 play negative roles in drought stress response. Journal of Plant Physiology, 230: 73-79.

Bae H. and Kim W. T. (2014). Classification and interaction modes of 40 rice E2 ubiquitin-conjugating enzymes with 17 rice ARM-U-box E3 ubiquitin ligases. Biochemical and Biophysical Research Communications, 444 (4): 575-580.

Chen K., Tang W. S., Zhou Y. B., Xu Z. S., Chen J., Ma Y. Z. and Li H. Y. (2020). Overexpression of the GmUBC9 gene enhances plant drought resistance and affects flowering time via histone H2B monoubiquitination. Frontiers in Plant Science, 11: 1336.

Dagert M. and Ehrlich, S. D. (1979). Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene, 6 (1):23-28.

Dong C., Hu H., Jue D., Zhao Q., Chen H., Xie J. and Jia L. (2016). The banana E2 gene family: Genomic identification, characterization, expression profiling analysis. Plant Science, 245: 11-24.

Dye B. T. and Schulman B. A. (2007). Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct., 36: 131-150.

Gao Y., Wang Y., Xin H., Li S. and Liang Z. (2017). Involvement of ubiquitin-conjugating enzyme (E2 gene family) in the ripening process and response to cold and heat stress of Vitis vinifera. Scientific reports, 7(1): 1-12.

Guo Q., Zhang J., Gao Q., Xing S., Li F. and Wang W. (2008). Drought tolerance through overexpression of monoubiquitin in transgenic tobacco. Journal of Plant Physiology, 165 (16): 1745-1755.

Guo Q. F., Zou Q. and Wang W. (2004). Physiological function of plant ubiquitin/26s proteasome pathway and its molecular biology. Plant Physiol Commun, 40: 533-539.

Hengen, P. N. (1997). Methods and reagents: shearing DNA for genomic library construction. Trends in Biochemical Sciences, 22 (7): 273-274.

Hershko A., Ciechanover A. and Varshavsky A. (2000). The ubiquitin system. Nature Medicine, 6(10): 1073-1081.

Ibrahim, H. F. (2017). Molecular genetic studies on some drought and salinity tolerance genes in bread wheat. CU Theses.1-153.

Jiang X. and Chen Z. J. (2012). The role of ubiquitylation in immune defence and pathogen evasion. Nature Reviews Immunology, 12(1): 35-48.

Jones D., Crowe E., Stevens T. A. and Candido, E. P. M. (2001). Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitin-conjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins. Genome Biology, 3(1): 1-15.

Jue D., Sang X., Liu L., Shu B., Wang, Y., Xie J. and Shi S. (2018). The ubiquitin-conjugating enzyme gene family in longan (Dimocarpus longan lour.): Genome-wide identification and gene expression during flower induction and abiotic stress responses. Molecules, 23(3): 662.

Jue D., Sang X., Lu S., Dong C., Zhao Q., Chen H. and Jia L. (2015). Genome-wide identification, phylogenetic and expression analyses of the ubiquitin-conjugating enzyme gene family in maize. PloS One, 10(11): e0143488.

Jue D., Sang X., Shu B., Liu L., Wang Y., Jia Z. and Shi S. (2017). Characterization and expression analysis of genes encoding ubiquitin conjugating domain-containing enzymes in Carica papaya. PloS One, 12 (2): e0171357.

Kang H.; Zhang M.; Zhou S.; Guo Q.; Chen F.; Wu J. and Wang W. (2016). Over-expression of wheat ubiquitin gene, TaUb2, improves abiotic stress tolerance of Brachypodium distachyon. Plant Sci., 248: 102-115.

Khan N., Hu C. M., Amjad Khan W., Naseri E., Ke H., Huijie D. and Hou X. (2018). Evolution and expression divergence of E2 gene family under multiple abiotic and phytohormones stresses in Brassica rapa. BioMed. Research International, 2018.

Kim J. H. and Kim W. T. (2013). The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol, 162: 1733-1749.

Krieger-Liszkay A., Kós P. B. and Hideg É. (2011). Superoxide anion radicals generated by methylviologen in photosystem I damage photosystem II. Physiologia Plantarum, 142 (1): 17-25.

Kwon S. J., Choi E. Y., Choi Y. J., Ahn J. H. and Park O. K. (2006). Proteomics studies of post-translational modifications in plants. Journal of Experimental Botany, 57(7): 1547-1551.

Lin Y., Hu Q., Zhou J., Yin W., Yao D., Shao Y. and Wang Y. (2021). Phytophthora sojae effector Avr1d functions as an E2 competitor and inhibits ubiquitination activity of GmPUB13 to facilitate infection. Proceedings of the National Academy of Sciences, 118 (10).

Linden K. J. and Callis J. (2020). The ubiquitin system affects agronomic plant traits. Journal of Biological Chemistry, 295 (40):13940-13955.

Liu W., Tang X., Zhu X., Qi X., Zhang N. and Si H. (2019). Genome-wide identification and expression analysis of the E2 gene family in potato. Molecular Biology Reports, 46 (1): 777-791.

Liu Z. B., Wang J. M., Yang F. X., Yang L., Yue Y. F., Xiang J. B. and Yang Y. (2014). A novel membrane bound E 3 ubiquitin ligase enhances the thermal resistance in plants. Plant Biotechnology Journal, 12 (1): 93-104.

Michelle C., Vourc’h P., Mignon L. and Andres C. R. (2009). What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor?. Journal of Molecular Evolution, 68 (6): 616-628.

Sadanandom A., Bailey M., Ewan R., Lee J. and Nelis S. (2012). The ubiquitin–proteasome system: central modifier of plant signalling. New Phytologist, 196 (1): 13-28.

Sharma B. and Bhatt T. K. (2017). Genome-wide identification and expression analysis of E2 ubiquitin-conjugating enzymes in tomato. Scientific Reports, 7 (1): 1-12.

Stone S. L. (2014). The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front. Plant Sci.: 5:135.

Sun Y., Zhao J., Li, X. and Li Y. (2020). E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis. New Phytologist, 227 (2): 455-472.

Tian F., Gong J., Zhang J., Feng Y., Wang G., Guo Q. and Wang W. (2014). Overexpression of monoubiquitin improves photosynthesis in transgenic tobacco plants following high temperature stress. Plant Science, 226: 92-100.

Vierstra R. D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci., 8: 135-142

Wang L., Wen R., Wang J., Xiang D., Wang Q., Zang Y. and Xiao W. (2019). Arabidopsis UBC 13 differentially regulates two programmed cell death pathways in responses to pathogen and lowtemperature stress. New Phytologist, 221 (2): 919-934.

Welchman R. L., Gordon C. and Mayer R. J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Reviews Molecular Cell Biology, 6 (8): 599-609.

Wen R., Wang S., Xiang D., Venglat P., Shi X., Zang Y. and Wang H. (2014). UBC 13, an E2 enzyme for L ys63-linked ubiquitination, functions in root development by affecting auxin signaling and Aux/IAA protein stability. The Plant Journal, 80 (3): 424-436.

Xu F. Q. and Xue H. W. (2019). The ubiquitin-proteasome system in plant responses to environments. Plant, Cell & Environment, 42(10): 2931-2944.

Xu L., Ménard R., Berr A., Fuchs J., Cognat V., Meyer D. and Shen W. H. (2009). The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation of FLC expression and repression of flowering in Arabidopsis thaliana. The Plant Journal, 57 (2): 279-288.

Yates G. and Sadanandom A. (2013). Ubiquitination in plant nutrient utilization. Frontiers in Plant Science, 4: 452.

Zhan H., Song L., Kamran A., Han, F., Li B., Zhou Z. and Yang J. (2020). Comprehensive Proteomic Analysis of Lysine Ubiquitination in Seedling Leaves of Nicotiana tabacum. ACS Omega, 5 (32): 20122-20133.

Zhiguo E., Zhang Y., Li T., Wang L. and Zhao H. (2015). Characterization of the ubiquitin-conjugating enzyme gene family in rice and evaluation of expression profiles under abiotic stresses and hormone treatments. PloS one, 10 (4): e0122621.

Zhou B. and Zeng L. (2017). Elucidating the role of highly homologous Nicotiana benthamiana ubiquitin E2 gene family members in plant immunity through an improved virus-induced gene silencing approach. Plant Methods, 13 (1): 1-17.

Zhou B. and Zeng L. (2018). The tomato U-box type E3 ligase PUB13 acts with group III ubiquitin E2 enzymes to modulate FLS2-mediated immune signaling. Frontiers in Plant Science, 9: 615.

Zientara-Rytter K. and Subramani S. (2019). The roles of ubiquitin-binding protein shuttles in the degradative fate of ubiquitinated proteins in the ubiquitin-proteasome system and autophagy. Cells, 8 (1):40.

Downloads

Published

2022-04-24

Issue

Section

Articles