USING BIOINFORMATICS TO INVESTIGATE THE NOVEL SARS- COV-2 VARIANTS AND THEIR IMPACTS ON INFECTIVITY
Abstract
The coronavirus pandemic swept across the world in 2020 and changed the pace, texture and nature of our lives. The causative agent belongs to the RNA Coro-navirus, also called SARS-CoV-2. Viruses constantly change through mutations and variations, due to evolution and adaptation processes, have been observed worldwide. Most emerging mutations have insignificant impact on the virus spreading, combinations of mutations or some mutations could provide a selective advantage, like increased transmissibility, infectivity or the capability to avoid the host immune response. An emergent Aspartic acid identified in 614 is substituted by Glycine (Asp 614 →Gly) (D614G) in the spike glycoprotein of SARS-CoV-2 strains which is the prevalent form globally. The study provides a computational analysis to compare the wild type of SARS-Cov-2 with a new variant (D614G) and find out the difference between them in terms of mutations and immunological features and their receptor binding domains which is a key part of the virus that is located on its' spike protein that facilitates its entrance into host cells and lead to infection. The study found that the D614 G variant exhibit alteration in the RBD that affect its pathogenicity, infectivity and reduced antibody binding and immune protection and is likely to be advantageous for immune evasion. It is the primary target in the prevention and treatment of infections.
References
Alberto Ambesi-impiombato and Dego d. Bernardo (2006). Computational Biology and Drug Discovery: From Single-Target to Network Drugs”, Current Bioinformatics 1: 3-10.
Altschul S. F., Gish W., Miller W., Myers E.W. and Lipman D. J., (1990). Basic local alignment search tool. Journal of molecular biology, 215(3): 403-410.
Astuti I., (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4): 407-412.
Bai H. X., Hsieh B., Xiong Z., Halsey K., Choi J. W., Tran T. M. L., Pan I., Shi L. B., Wang D. C., Mei J. and Jiang X. L., (2020). Performance of radiologists in differentiating COVID-19 from non-COVID-19 viral pneumonia at chest CT. Radiology, 296(2): E46-E54.
Berman H. M., (2008). The protein data bank: a historical perspective. Acta Crystallographica Section A: Foundations of Crystallography, 64(1): 88-95.
Channappanavar R., Fehr A. R., Vijay R., Mack M., Zhao J., Meyerholz D. K. and Perlman S., (2016). Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host & Microbe, 19(2): 181-193.
Channappanavar R. and Perlman S., (2017). Pathogenic human corona-virus infections: causes and consequences of cytokine storm and immunopathology. In Seminars in Immunopathology, Vol. 39(5): 529-539. Springer Berlin Heidelberg.
Fehr A. R. and Perlman S., (2015). Coro-naviruses: an overview of their replication and pathogenesis. Corona-viruses: pp:1-23.
Furuyama T. N., Antoneli F., Carvalho I. M., Briones M. R. and Janini L. M., (2020). Temporal data series of COVID-19 epidemics in the USA, Asia and Europe suggests a selective sweep of SARS-CoV-2 Spike D614G variant. arXiv preprint arXiv:2006-11609.
Gentleman R. C., Carey V. J. and Bates D. M. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5, R80, Article number: R80.
Holloway Eric (2020). Tutorial: Bioinformatics Basics, Communications of the Blyth Institute 35-38.
Hou Y. J., Chiba S., Halfmann P., Ehre C., Kuroda M., Dinnon K. H., Leist S.R., Schäfer A., Nakajima N., Takahashi K. and Lee, R.E., (2020). SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science, 370(6523) :1464-1468.
Hu Z., Ge Q., Li S., Jin L. and Xiong M., (2020). Artificial intelligence forecasting of covid-19 in China. arXiv preprint arXiv: 2002-07112.
Jiang S., Hillyer C. and Du L., (2020). Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends in Immunology, 41(5): 355-359.
Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N. and Bi Y., (2020). Genomic characterization and epidemiology of 2019 novel corona-virus: implications for virus origins and receptor binding. The Lancet, 395(10224): 565-574.
Madden T., (2002). Chapter 16. The BLAST Sequence Analysis Tool. The NCBI Handbook.
Marzi A., Chadinah S., Haddock E., Feldmann F., Arndt N., Martellaro C., Scott D. P., Hanley P. W., Nyenswah T. G., Sow S. and Massaquoi M., (2018). Recently identified mutations in the Ebola virus-Makona genome do not alter pathogenicity in animal models. Cell Reports, 23(6): 1806-1816.
McNamara R. P., Caro-Vegas C., Landis J. T., Moorad R., Pluta L. J., Eason A. B., Thompson C., Bailey A., Villamor F. C. S., Lange P. T. and Wong J. P., (2020). High-density amplicon sequencing identifies community spread and ongoing evolution of SARS-CoV-2 in the Southern United States. Cell Reports, 33(5): 108352.
Tanner J. A., Watt R. M., Chai Y. B., Lu L. Y., Lin M. C., Peiris J. M., Poon L. L., Kung H. F. and Huang J. D., (2003). The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5′ to 3′ viral helicases. Journal of Biological Chemistry, 278(41): 39578-39582.
Rabi F. A., Al Zoubi M. S., Kasasbeh G. A., Salameh D. M. and Al-Nasser A. D., (2020). SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens, 9(3): 231.
Ruedas J. B., Ladner J. T., Ettinger C. R., Gummuluru S., Palacios G. and Connor J. H., (2017). Spontaneous mutation at amino acid 544 of the Ebola virus glycoprotein potentiates virus entry and selection in tissue culture. Journal of Virology, 91(15): e00392-17.
Simmons G., Zmora P., Gierer S., Heurich A. and Pöhlmann S., (2013). Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research. Antiviral Research, 100: 605-614.
Tai W., He, L., Zhang X., Pu J., Voronin D., Jiang S., Zhou Y. and Du L., (2020). Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cellular & Molecular Immunology, 17(6): 613-620.
Vaishya R., Javaid M., Khan I. H. and Haleem A., (2020). Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(4): 337-339.
Volz E., Hill V., McCrone J. T., Price A., Jorgensen D., O’Toole Á., Southgate J., Johnson R., Jackson B., Nascimento F. F. and Rey S. M., (2021). Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell, 184(1): 64-75.
Walls A. C., Park Y. J., Tortorici M. A., Wall A., McGuire A. T. and Veesler D., (2020). Structure, function, and antigenicity of the SARS-CoV- 2 spike glycoprotein. Cell, 181(2):
-292.
Wang M. K., Lim S. Y., Lee S. M. and Cunningham J. M., (2017). Biochemical basis for increased activity of Ebola glycoprotein in the 2013–16 epidemic. Cell Host & Microbe, 21(3): 367-375.
Wu F., Zhao S., Yu B., Chen Y. M., Wang W., Song Z. G., Hu Y., Tao Z. W., Tian J. H., Pei Y. Y. and Yuan M. L., (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579 (7798): 265-269.
Yurkovetskiy L., Wang X., Pascal K. E., Tomkins-Tinch C., Nyalile T. P., Wang Y., Baum A., Diehl W. E., Dauphin A., Carbone C. and Veinotte K., (2020). Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell, 183(3): 739-751.
Zhou B., Thao T. T. N., Hoffmann D., Taddeo A., Ebert N., Labroussaa F., Pohlmann A., King J., Steiner S., Kelly, J. N. and Portmann J., (2021). SARS-CoV-2 spike D614G change enhances replication and transmission. Nature, 592 (7852): 122-127.