NOVEL TRANSGRESSIVE SEGREGATION IN BREAD WHEAT
Abstract
The present study was conducted to create new genetic variation in the hybrid population WM10 × Gemmeiza9 of bread wheat, phenotypic evaluation of F2 and F3 segregated populations for number of spikelets/spike, number of kernels/spike, number of kernels/spikelet, number of fertile spikes per plant, 1000-kernel weight and grain yield per plant and to estimate interrelationships between all possible pairs of studied traits. An exceptional transgressive segregation exceeded its parental phenotypic values in positive direction for number of spikelets/spike, number of kernels per spike and grain yield per plant was selected from F2 generation. In F3 generation, considerable high estimates of genotypic and phenotypic coefficients of variation for grain yield/plant, number of kernels/spike, number of fertile spikes/plant, 1000-kernel weight and number of spikelets/spike were observed. Positive and significant correlation coefficients between grain yield/plant and number of spikelets/spike, number of kernels/spike, number of kernels/spikelet, number of fertile spikes/plant, and 1000-kernel weight were estimated, indicating that indirect selection for these traits would be accompanied by high grain yield in this transgressed hybrid population. High positive and significant correlation coefficients occurred between number of kernels/spike and number of spikelets/spike and between number of kernels/spike and number of kernels/spikelet. These results indicated that number of spikelets/spike and number of kernels/spikelet are important in this transgressive hybrid population in the determination of number of kernels/spike.
References
Al-Bakry M. R. I., (2004). Improvement of wheat for drought tolerance by using some biotechnological and nuclear techniques. Ph. D. Thesis, Fac. Agric., Cairo Univ., Egypt.
Al-Bakry M. R. I., (2010). Inheritance of induced glaucousness, grain yield, and yield-related traits in bread wheat (Triticum aestivum L.). Egypt. J. Genet. Cytol. 39: 15-27.
Al-Bakry M. R. I., Al-Naggar A. M. M., Ghareeb Zeinab E. and Mohamed Samia G. A., (2017). Gene effects and interrelationships of spike traits in bread wheat. Egyptian J. of Plant Breeding, 21 (1): 85-98.
Broers L. H. M. and Jacobs T., (1989). The inheritance of host plant effect on latency period of wheat rust in spring wheat. II. Number of segregating factors and evidence for transgressive segregation in F3 and F4 generations. Euphytica, 44: 207-217.
Burton G. W., (1952). Quantitative inheritance in grasses. In: Proceedings of the 6th International Grassland Congress. pp: 277-283.
De los Reyes B. G., (2019). Genomic and epigenomic bases of transgressive segregation - New breeding paradigm for plant phenotypes. Plant Science, 288 (2019) 110213.
de Vicente M. C. and Tanksley S. D., (1993). QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics, 134: 585-596.
Dittrich-Reed D. R. and Fitzpatrick B. M., (2013). Transgressive hybrids as hopeful monsters. Evol. Biol., 40: 310-315.
FAO., (2009). How to feed the World in 2050. FAO, Rome.
FAO., (2016). http://www.fao.org/worldfoodsituation/csdb/en/
Fischer R. A., (2008). The importance of grain or kernel number in wheat: a reply to Sinclair and Jamieson. Field Crops Res., 105: 15-21.
Fischer R. A., (2011). Wheat physiology: a review of recent developments. Crop Pasture Sci., 62: 95-114.
González F. G., Aldabe M. L., Terrile I. I. and Rondanini D. P., (2014). Grain weight response to different postflowering source:sink ratios in modern high-yielding Argentinean wheats differing in spike fruiting efficiency. Crop Sci., 54: 297.
González-Navarro E. O., Griffiths S., Molero G., Reynolds P. M. and Slafer A. G., (2015). Dynamics of floret development determining differences in spike fertility in an elite population of wheat. Field Crops Res., 172: 21-31.
Goulet B. E., Roda F. and Hopkins R., (2017). Hybridization in Plants: Old Ideas, New Techniques. Plant Physiology, Vol. 173: 65-78.
Grant V., (1975). Genetics of Flowering Plants. Columbia University Press, New York.
Grant V., (1981). Plant Speciation. Columbia University Press, New York.
Guindon M. F., Martin E., Cravero V. and Cointry E., (2018). Transgressive segregation, heterosis and heritability for yield-related traits in a segregating population of Pisum sativum L. Expl Agric., 1-11. Cambridge University Press. Doi: 10.1017/S0014479718000224
Guo Z., Zhao Y., Röder M. S., Reif J. C., Ganal M. W., Chen D. and Schnurnusch T., (2018). Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Scientific Reports, 8: 14435.
Hagiwara W. E., Onishi K., Takamure I. and Sano Y., (2006). Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica 150: 27-35.
Hsu P. and Walton P. D., (1970). The inheritance of morphological and agronomic characters in spring wheat. Euphytica 19: 54-60.
Kim S. K., Kim J. and Jang W., (2017). Past, Present and Future Molecular Approches to Improve Yield in Wheat. In: Ruth Wanycra editor. Wheat Improvement, Management and Utilization. DOI: 10.5772/ 63694.pp. 17-37.
Koseoglu K., Adak A., Sari D., Sari H., Oncu F. Ceylan and Toker C., (2017). Transgressive segregations for yield criteria in reciprocal interspecific crosses between Cicer arietinum L. and C. reticulatum Ladiz. Euphytica, 213: 116.
Lee T. S. and Shaner G., (1985). Transgressive segregation of length of latent period in crosses between slow leaf-rusting wheat (Triticum aestivum) cultivars. Phytopathology, 75: 643-647.
Mackay I. J., Cockram J., Howell P. and Powell W., (2020). Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnology Journal, pp. 1-9.
Mao D., Liu T., Xu C., Li X. and Xing Y., (2011). Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilograin weight in rice. Euphytica, 180: 261-271.
Mujeeb-Kazi A. and R. Villareal L., (2002). Wheat. In: Evolution and adaptation of cereal crops. Chopra V. L. and Prakash S. (Eds.). Science Publishers, Inc., Enfield, NH, USA.
Nilsson-Ehle H., (1911). Kreuzungsunter-suchungen an hafer und weizen. Lunds Univ. Areskripft, 7: 1-84.
Pabuayon I. C. M., Kitazumi A., Cushman K. R., Singh R. K., Gregorio G. B., Dhatt B., Zabet Moghaddam M., Walia H. and Reyes B. G. De los, (2020). Transgressive segregation for salt tolerance in rice due to physiological coupling and uncoupling and genetic network rewiring. bioRxiv preprint doi: https://doi.org/10.1101/2020.06.25.171603
Raval L., Pithia M. S., Mehta D. R., Mungra K. S. and Shah Siddhi, (2018). Spectrum of variation and transgressive segregation in F2 generation of desi chickpea. Electronic Journal of Plant Breeding, 9 (1): 18-24.
Reynolds M., Pellegrineschi A. and Skovmand B., (2005). Sinklimitation to yield and biomass: a summary of some investigations in spring wheat. Ann. Appl. Biol., 146: 39-49.
Reynolds M. P., Calderini D. F., Condon A. G. and Rajaram S., (2001). Physiological basis of yield grains in wheat associated with the LR 19 translocation from Agropyron elongatum. Euphytica, 119: 137-141.
Rieseberg L. H., Archer M. A. and Wayne R. K., (1999). Transgressive segregation, adaptation and speciation. Heredity, 83: 363-372.
Rieseberg L. H., Widmer A., Arntz A. M., and Burke J. M., (2003). The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos Trans R Soc Lond B Biol. Sci., 358: 1141-1147.
Semenov M. A. and Stratonovitch P., (2013). Designing high-yielding wheat ideotypes for changing climate. Food and Energy Security., 2(3): 185-196. Doi: 10.1002/fes3.34
Shivaprasad P. V., Dunn R. M., Santos B. A., Bassett A. and Baulcombe D. C., (2012). Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J., 31: 257-266.
Shreya S., Ainmisha S. and Vashanti R. P., (2017). Transgressive segregation study in F3 population of four groundnut crosses. International Journal of Current Microbiology and Applied Sciences, 6: 2054-2059.
Sidwell R. J., Smith E. L. and McNew R. W., (1976). Inheritance and interre-lationships of grain yield and selected yield-related traits in a hard red winter wheat cross. Crop Sci., 16: 650-654.
Singh P. and Narayanan S. S., (2000). Biometrical Techniques in Plant Breeding. Kalyani Publishers, New Delhi, India.
Smith G. S., (1966). Transgressive segregation in spring wheat. Crop Sci., 6: 310-317.
Snedecor G. W. and Cochran W. G., (1967). Statistical Methods. Sixth edition, Iowa State University Press, Ames, Iowa.
Sreenivasulu N. and Schnurbusch T., (2012). A genetic playground for enhancing grain number in cereals. Trends Plant Sci., 17: 91-101.
Tilman D., Balzer C., Hill J. and Befort B. L., (2011). Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA., 108 (50): 20260-20264. DOI: 10.1073/pnas.1116437108
Vega U. and Frey K. J., (1980). Transgressive segregation in inter- and intraspecific crosses of barley. Euphytica, 29: 585-594.
Yadav B., Tyagi C. S. and Singh D., (1998). Genetics of transgressive segregation for yield and yield components in wheat. Ann. Appl. Biol., 133: 227-235.
Yadav B., Ram B., Sethi S. K. and Luthra O. P., (1992). Genetics of field resistance and transgressive segregation leaf rust of wheat (Triticum aestivum L. em. Thell.). Cereal Research Communication, 20: 41-48.
Zhou Y., Conway B., Miller D., Marshall D., Cooper A., Murphy P., Chao S., Brown-Guedira G. and Costa J., (2017). Quantitative trait loci mapping for spike characteristics in hexaploid wheat. Plant Genome, 10 (2). https://doi.org/10.3835/plantgenome2016.10.0101