Drosophila Transgenic Lines Expressing the Mammalian N-acetylglucosaminyltransferase II and β 1,4-galactosyltransferase

Authors

  • A. MOHAMMED Agricultural Genetic Engineering Research Institute (AGERI), ARC, 9 Gamaa Street, Giza, Egypt Center for Tropical Diseases Research and Training, Univ of Notre Dame, Notre Dame, IN, USA
  • L. SUN Center for Tropical Diseases Research and Training, Univ of Notre Dame, Notre Dame, IN, USA
  • M. J. F. FRASER Center for Tropical Diseases Research and Training, Univ of Notre Dame, Notre Dame, IN, USA

Abstract

Nlinked glycosylated proteins play a role in different biological processes. The initial steps of protein modifications with glycan in eukaryotic cells are identical. Both mammalian and insect N-glycosylation pathway share the intermediate complex, (For review see: Jarvis 2003; Rendić et al., 2008). The N-glycosylation process starts with trimming three glucose residues from the high mannose structure "Glu3Man9GlcNac2-N-Asn", followed by further removing of five mannose residues. One residue of N-acetylglocusamine is added to the structure and the common intermediate structure is achieved by trimming two mannose residues. In insect cells removal of further residues is continue by trimming the terminal N-acetylglucosamine residue forming the major N-glycan product in insect cells, the paucimannose, "Man3GlcNAc2-N-Asn" (Altmann et al., 1995). However, in some cases, only extremely low levels of terminal glycosyltransferase activities have been detected in insect cells (Jarvis, 2003). In contrast, the mammalian glycosylation process tends to elongate this intermediate structure and producing more complicated complex of N-glycans with terminal sialic acids (Beyer et al., 1979).
The differences in glycosylation pathways between insect and mammalian cells limit the ability of insect-based baculovirus expression systems to produce broad spectrum varieties of N-glycoproteins. In early attempts to overcome such problematic differences, lepidopteran cells were transformed with mammalian genes to shift the insect glycoslation process toward mammalian pathway. The Spodoptera frugiperda cells (Sf9) were engineered to express the mammalian β1,4-galactosyltransferase (GalT) and α2,6-sialyltransferase (ST6). The resulted cells, Sf4GalT/ST6, produced a recombinant glycoprotein with mono-antennary structure with only α1,3 arm elongated (Hollister and Jarvis, 2001; Hollister et al., 2002). Further transformion with N-acetylglucoseaminyl-transferase II gene created SfSWT-1 cells which produced a recombinant glycoprotein with bi-antennary sialylated N-glycans (Hollister et al., 2002).
Our goal is to apply the knowledge gained from engineered insect cells to “humanize” the glycoprotein processing pathway in intact insects. Here we report the generation of transgenic Drosophila lines expressing the human Nacetylglucosaminyltransferase II and a bovine β1,4-galactosyltransferase.

References

Altmann, F., H. Schwihla, E. Staudacher, J. Glossl and L. Marz (1995). Insect cells contain an unusual, membrane-bound B-N-acetyl gluciosaminidase probably involved in the processing of protein N-glycans. J. Biol. Chem., 270: 17344-17349.

Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman (1990). Basic local alignments search tool. J. Mol. Biol., 215: 403-410.

Beyer, T. A., J. I. Rearick, J. C. Paulson, J. P. Prieels, J. E. Sadler and R. L. Hill (1979). Biosynthesis of mammalian glycoproteins. Glycosylation pathways in the synthesis of the nonreducing terminal sequences. J. Biol. Chem., 254: 12531-12541.

Elick, T. A., C. A. Bauser, N. Principe and M. J. Fraser (1995). PCR analysis of insertion site specificity, transcription, and structural uniformity of the Lepidopteran transposable element IFP2 in the TN-368 cell genome. Genetica, 97: 127-139.

Goodwin, E. C. and F. M. Rottman (1992). The 3'-flanking sequence of the bovine growth hormone gene contains novel elements required for efficient and accurate polyadenylation. J. Biol. Chem., 267: 16330-16334.

Gossen, M., S. Freundlieb, G. Bender, G. Muller, W. Hillen and H. Bujard (1995). Transcriptional activation by tetracyclines in mammalian cells. Science, 268: 1766-1769.

Handler, A. M. and R. A. Harrell (1999). Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol. Biol., 8: 449-457.

Hollister, J. and D. L. Jarvis (2001). Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian β1,4-galactosyl-transferase and α2,6-sialyltransferase genes. Glycobiology, 11: 1-9.

Hollister, J., E. Grabenhorst, M. Nimtz, H. Conradt and D. L. Jarvis (2002). Engineering the protein N-glycosylation pathway in insect cells for production of biantennary complex N-glycans. Biochemistry, 41: 15093-15104.

Horn, C., B. Jaunich and E. A. Wimmer (2000). Highly sensitive, fluorescent transformation marker for Drosophila transgenesis. Dev. Genes Evol., 210: 623-629.

Jarvis, D. L. (2003). Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology,

: 1-7.

Li, X., R. A. Harrell, A. M. Handler, T. Beam, K. Hennessy and M. J. Fraser (2005). piggyBac internal sequences are necessary for

efficient transformation of target genomes. Insect Mol. Biol., 14: 17-30.

Mohammed, A., L. Sun and M. J. Fraser (2009a). Germline Transformation in Drosophila melanogaster expressing the mammalian sialic acid synthase and CMP-sialic acid synthetase. Arab J. Biotech., 12: 303-314.

Mohammed, A. L. Sun and M. J. Fraser (2009b). The piggyBac-mediated germline transformation of Drosophila melanogaster expressing the mammalian α2,3-sialyltransferase and α2,6-sialyltransferase. Arab J. Biotech., 12: 315-324.

Mohammed, A., L. Sun, T. Fraser and M. J. Fraser (2010). PiggyBac tarnsposon-based tetracycline-dependent transactivator expression in Drosophila. Egypt. J. Genet. Cytol., 39: 73-86.

Rendi, D., I. B. H. Wilson and K. Paschinger (2008). The Glycosylation Capacity of Insect Cells. Croatica Chemica Acta. 81: 7-21.

Shaper, N. L., J. H. Shaper, J. L. Meuth, J. L. Fox, H. Chang, I. R. Kirsch and G. F. Hollis (1986). Bovine galactosyltransferase: identification of a clone by direct immunological screening of a cDNA expression library. Proc. Natl. Acad Sci. USA, 83: 1573-1577.

Shi, X., R. L. Harrison, J. R. Hollister, A. Mohammed, M. J. Fraser and D. L. Jarvis (2007). Construction and characterization of new piggyBac vectors for constitutive or inducible expression of heterologous gene pairs and the identification of a previously unrecognized activator sequence in piggyBac. BMC Biotechnol., Jan., 18: 7-5.

Stebbins, M. J., S. Urlinger, G. Byrne, B. Belo, W. Hillen and J. C. P. Yin (2001). Tetracycline-inducible systems for Drosophila. Proc. Natl. Acid Sci., USA, 98: 10775-10780.

Tan, J., A. F. D'Agostaro, B. Bendiak, F. Reck, M. Sarkar, J. A. Squire, P. Leong and H. Schachter (1995). The human UDP-N-acetylglucosamine: alpha-6-D-mannoside-beta-1,2-N-acetylglucosaminyltransferase II gene (MGAT2). Cloning of genomic DNA, localization to chromosome 14q21, expression in insect cells and purification of the recombinant protein. Eur. J. Biochem, 231: 317-328.

Tomiya, N., D. Howe, J. J. Aumiller, M. Pathak, J. Park, K. B. Palter, D. L. Jarvis, M. J. Betenbaugh and Y. C. Lee (2003). Complex-type biantennary N-glycans f recombinant human transferrin from Trichoplusiani insect cells expressing mammalian B-1,4-galactosyltransferase and B-1,2-N-acetylglucosa- minyltransferaseII. Glycobiology, 13:23-34.

Downloads

Published

2016-01-11

Issue

Section

Articles