MtNOOT HETEROLOGOUS EXPRESSION WITH FaWRKY1 OVER- EXPRESSION CONFER STRWBERRY RESISTANCE

Authors

  • GIHAN M. H. HUSSEIN Plant Genetic Transformation Department, Agricultural Genetic Engineering Institute (AGERI), Agricultural Research Center (ARC), Giza
  • A. H. ALWAN Biology Department, College of Science, Mustansiriyah University, Baghdad
  • ROBA M. ISMAIL Plant Genetic Transformation Department, Agricultural Genetic Engineering Institute (AGERI), Agricultural Research Center (ARC), Giza
  • RANIA M. ABOU ALI Nucleic Acid and Protein Structure Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Giza
  • GHADA A. ABU EL-HEBA Nucleic Acid and Protein Structure Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Giza

Abstract

Strawberry (Fragaria x ananassa) is one of the favorite fruit worldwide due to its wide health benefits, and distinct flavor and aroma. FaWRKY1 gene was suggested as a significant element intermediate defense response against various pathogens attack in strawberry. Because of the influencing role of WRKY family involving in defense network, it has become a favorable candidate for improving crops quality. WRKY can precisely recognition and binding to the down-stream promoters of transcription factors activating defense cascades. The ability of FaWRKY to enhance resistance against Macrophomina phasiolena was investigated by performing Agrobacterium-mediated transformation protocol for transient overexpression of FaWRKY1 gene in strawberry leaves (Fragaria x ananassa cv. Camarosa) to evaluate its function upon the fungal infection. However, MtNOOT gene were transiently hetero-expressed in strawberry leaves separately and in accomplishment with the FaWRKY1. We demonstrated that the existing of W-box sequences within the MtNOOT (NPR1-like gene) promoter region, which are recognized definitely by SA-induced FaWRKY DNA binding protein, increased strawberry resistance activity when the two genes are transformed in combined to each other. The severity of leaf injury was observed at three, five, and seven days post pathogen inoculation on FaWRKY1, MtNOOT, and FaWRKY1 & MtNOOT combination-transformed strawberry plants compared to the control untransformed infected plants as positive control and a healthy untransformed non-infected plants as negative control. Susceptibility to fungal infection was obviously detected and showing that the two genes combination (FaWRKY & MtNOOT) revealed the best resistance against the pathogen fungal attack followed by MtNOOT and finally by the FaWRKY1 transcription factor. Our results evidence that FaWRKY1 gene acts upstream of the heterologous MtNOOT (NPR1-like gene) and positively regulates its expression throughout plant defense activation during pathogen attack.

Author Biography

GHADA A. ABU EL-HEBA, Nucleic Acid and Protein Structure Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Giza

Tel.: 01006011527

References

Altindag M., Sahin M., Esitken A., Ercisli S., Guleryuz M., Donmez M. F. and Sahin F. (2006). Biological control of brown rot (Moniliana laxa Ehr.) on apricot (Prunus armeniaca L. cv. Hacıhaliloglu) by Bacillus, Burkholdria, and Pseudomonas application under in vitro and in vivo conditions. Biol. Control., 38:369-372.

Aravind L., and Koonin E. V. (1999). Fold prediction and evolutionary analysis of the POZ domain: Structural and evolutionary relationship with the potassium channel tetramerization domain. J. Mol. Biol., 285:1353-1361.

Asai T., Tena G., Plotnikova J., Willmann M. R., Wan-Ling C., Gomez-Gomez L., Boller T., Ausubel F. M. and Sheen J. (2002). MAP kinase signaling cascade in Arabidopsis innate immunity. Nature, 415:977-983.

Assaad F. F. and Signer E. R. (1990). Cauliflower mosaic virus P35S promoter activity in Escherichia coli. Mol. Gen. Genet., 223: 517-520.

Benfey P. N., Ren L. and Chua N. H. (1989). The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J., 8: 2195-2202.

Browne G. T., Becherer H. E., McLaughlin S. T. and Wakeman R. J. (2002). Strategies for management of Phytophthora on California strawberries. The Pink Sheet: California Strawberry Commission Strawberry News Bulletin, 02-09.

Burkhardt A. K., Childs K. L., Wang J., Ramon M. L. and Martinm F. N. (2019). Assembly, annotation, and comparison of Macrophomina phaseolina isolates from strawberry and other hosts. BMC Genomics, 20:802.

Casado-Díaz A., Encinas-Villarejo S., Santos B. D. L., Schilirò E., Yubero-Serrano E. M. and Amil-Ruíz F. (2006). Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiol. Plant., 128: 633-650.

Chamorro M., Aguado A. and De los Santos B. (2015). First Report of Root and Crown Rot Caused by Pestalotiopsis clavispora (Neopestalotiopsis clavispora) on Strawberry in Spain. Plant Disease, 1-3.

Chern M., Canlas P. E., Fitzgerald H. A. and Ronald P. C. (2005). Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J., 43:623-635.

Choi G. J., Jang K. S., Kim J. S., Lee S.W., Cho J. Y., Cho K. Y. and Kim J. C. (2004). In vivo antifungal activities of 57 plant Extracts against six plant pathogenic fungi. Plant Pathol. J., 3:184-191.

Couzigou J. M., Zhuko V., Mondy S., Abu el Heba G., Cosson V., Noel Ellis T.H., Ambrose M., Jiangqi Wen, Tadege M., Tikhonovich I., Mysore K. S., Putterill J., Hofer J., Borisov A. Y. and Rateta P. (2012). NODULE ROOT and COCHLEATA Maintain Nodule Development and Are Legume Orthologs of Arabidopsis BLADE-ON-PETIOLE Genes., 24: 4498-4510.

De Meyer G., and Höfte M. (1997). Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588-593.

Desveaux D., Maréchal A., and Brisson N. (2005). Whirly transcription factors: defense gene regulation and beyond. Trends Plant Sci., 10:95-102.

Diqiu Y. u., Chen C. and Chen Z. (2001). Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 Gene Expression. Plant Cell, 13:1527-1540.

Encinas-Villarejo S., Maldonado A. M., Amil-Ruiz F., De Los Santos B., Romero F. and Pliego-Alfaro F. I. (2009). Evidence for a positive regulatory role of strawberry (Fragaria × ananassa) Fa WRKY1 and Arabidopsis at WRKY75 proteins in resistance. J. Exp. Bot., 60:3043-3065.

Eulgem T. and I. Somssich E. (2007). Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol., 10: 366-371.

Fu Z. Q., and Dong X. (2013). Systemic acquired resistance: turning local infection into global defense. Ann. Rev. Plant Biol., 64:839-863.

Garrido-Bigotes A., Figueroa N. E., Figueroa P. M. and Figueroa C. R. (2018). Jasmonate signaling pathway in strawberry: genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening. PLoS One, 13:e0197118.

Giampieri F., Alvarez-Suarez J. M., Cordero M. D., Gasparrini M., Forbes-Hernandez T. Y., Afrin S., Santos-Buelga C., González-Paramás A. M., Astolfi P., Rubini C., Zizzi A., Tulipani S., Quiles J. L., Mezzetti B. and Battino M. (2017). Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-activated protein kinase signaling cascade. Food Chem., 234:464-471.

Higuera J. J., Garrido-Gala J., Lekhbou A., Arjona-Girona I., Amil-Ruiz F., Mercado J. A., Pliego-Alfaro F., Muñoz-Blanco J., C. J. López-Herrera and Caballero J. L. (2019). The Strawberry FaWRKY1 transcription factor negatively regulates resistance to Colletotrichum acutatum in Fruit upon Infection. Front. Plant Sci., 10:480.

Hussein G. M. H., Sayed M. A., Abdel-Rahman T. M. A. and Alwan A. H. (2012). Induction of acquired resistance in strawberry calli by elicitation of fungal homogenates. J. Food Agric. Environ., 10:750-756

Hussein G. M. H., Abdel-Rahman Tahany M. A. and Alwan A. H. (2016). Defense response enhancement in strawberry via elicitors. 3 Biotech, 6:130.

Ishihama, N., and H. Yoshioka (2012). Post-translational regulation of WRKY transcription factors in plant immunity. Curr. Opin. Plant Biol. 15:431–437.

Jacob D., Lewin A., Meister B. and Appel B. (2002). Plant-specific promoter sequences carry elements that are recognized by the eubacterial transcription machinery. Trans. Res., 11:291-303.

Jiang W., Wu J., Zhang Y., Yin L. and Lu J. (2015). Isolation of a WRKY30 gene from Muscadiniarotundifolia (Michx) and validation of its function under biotic and abiotic stresses. Protoplasma, 252:1361-1374.

Kapila J., Rycke R. D., Montagu M. V. and Angenon G. (1997). An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Science, 122: 101-108.

Klessig, D. F. and Malamy J. (1994). The salicylic acid signal in plants. Plant Mol. Biol., 26:1439-1458.

Koncz C., Martini N., Mayerhofer R., Koncz-Kalman Z., Korber H., Redei G. P. and Schell J. (1989). High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA, 86:8467-8471.

Li C., He X., Luo X., Xu L., Liu L. and Min L. (2014). Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by verticillium dahliae by activating JASMONATE ZIMDOMAIN1 expression. Plant Physiol., 166:2179-2194.

Liu X., Song Y., Xing F., Wang N., Wen F. and Zhu C. (2016). GhWRKY25, a group I WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana. Protoplasma, 253: 1265-1281.

Makandar R., Essig J. S., Schapaugh M. A., Trick H. N. and Shah J. (2006). Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol. Plant-Microbe Interact., 19: 123-129.

Mangano S., Gonzalez C. D. and Petruccelli S. (2014). Agrobacterium tumefaciens-Mediated Transient Transformation of Arabidopsis thaliana Leaves. Jose J. Sanchez-Serrano and Julio Salinas (eds.), Arabidopsis Protocols, Methods in Molecular Biology, vol. 1062.

Marchive C., Léon C., Kappel C., Coutos- Thévenot P., Corio-Costet M. F., Delrot S. and Lauvergeat V. (2013). Over-Expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS One 8:e54185.

Millner P. D., (2006). Control of strawberry black root rot with compost socks. Online Plant Health Progr. doi: 10.1094/PHP-1016-02-RS.

Odell J. T., Nagy F. and Chua N. H. (1985). Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 313: 810-812.

Palm C. J., Costa M. A., An G. and Ryan C. A. (1990). Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor II gene from potato. Proc. Natl. Acad. Sci. USA., 87:603-607.

Pandey S. P., and Somssich I. E. (2009). The Role of WRKY transcription factors in plant immunity. Plant Physiol., 150:1648-1655.

Parikka P., (2004). Disease resistance in strawberry breeding programs: major pathogens in European strawberry production. Acta Hortic., 649:49-54

Phukan U. J., Mishra S. and Shukla R. K. (2015). Waterlogging and submergence stress: affects and acclimation. Crit. Rev. Biotechnol., 16:1-11.

Robatzek S. and Somssich I. E. (2002). Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes and Development, 16:1139-1149.

Robert-Seilaniantz A., Grant M. and Jones J. D. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol., 49:317-343.

Sedgwick S. G. and Smerdon S. J. (1999). The ankyrin repeat: A diversity of interactions on a common structural framework. Trends Biochem. Sci., 24: 311-316.

Seo, E., Choi D. and Choi. (2015). Functional studies of transcription factors involved in plant defenses in the genomics era. Brief. Funct. Genomics 14: 260-267.

Sharma A. and Bhardwaj L. N. (2001). Influence of temperature, relative humidity and nutrient solution on sporangial germination and zoo-spore liberation in Phytophthora cactorum causing leather rot of strawberry. Plant Dis. Res., 16:243-246.

Spoel S. H., and Dong X. (2008). Making sense of hormone crosstalk during plant immune responses. Cell Host Microbe., 3:348-351.

Sukharev S. L., Klenchin V. A., Serov S. M., Chernomordik L. V. and Chizmadzhev Yu. A. (1992). Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores, Biophys. J. © Biophysica Society, 63: 1320-1327.

Timudo-Torrevilla O. E., Everett K. R., Waipara N. W., Boyd-Wilson K. S. H., Weeds P., Langford G. I. and Walter M. (2005). Present status of strawberry fruit rot diseases in New Zealand. New Zealand Plant Prot., 58:74-79.

U¨ lker B. and Somssich I. E. (2004). WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol., 7: 491-498.

Viejobueno J., Albornoz P. L., Camacho M., de los Santos B., Martínez- Zamora M. G., Salazar S. M. (2021). Protection of Strawberry Plants against Charcoal Rot Disease (Macrophomina phaseolina) Induced by Azospirillum brasilense. Agronomy, 11:195.

Yan, S. and Dong X. (2014). Perception of the plant immune signal salicylic acid. Plant Biol., 0: 64-68.

Yang, Y., Li R. and Qi M. (2000). In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J., 22:543-551.

Yu D., Chen C. and Chen Z. (2001). Evidence for an Important Role of WRKY DNA Binding Proteins in the Regulation of NPR1 gene expression. Plant Cell, 13:1527-40.

Downloads

Published

2021-03-23 — Updated on 2021-06-02

Versions