ISOLATION AND CHARACTERIZATION OF HALOPHILIC- ENDOPHYTES FROM EL-HAMRA OASIS, EL-NATRUN VALLEY, EGYPT. I: IMPACT OF ENDOPHYTIC BACTERIAL ISOLATES ON TOMATO (LYCOPERSICON ESCULENTUM) GROWTH PROMO- TION UNDER GREENHOUSE CONDITIONS.
Abstract
Thirty-seven endophytic bacterial isolates were isolated from tissues of four salt-tolerant plant species (Phragmites australis, Tamarix nilotica, Juncus rigidus, and Halocnemum strobilaceum) growing on shores of the El-Hamra Oasis (hypersaline soda lakes, with salinity level, reaches up to 5.0 M NaCl), EL-Natrun Valley, Egypt. Isolates were determined by different morphological, physiological, and molecular characters. Sequencing data of 16S rRNA declare that the 37 isolates belong to 3 genera Bacillus, Staphylococcus, and Vibrio (accessions no. Ky608807 - KY608843). All isolates produced Indol- 3-acetic acid (IAA) when allowed to grow in LB media fortified with 0.1% L- tryptophan. The highest five potent isolates "IAA- producer" were selected and used to inoculate tomato (Lycopersicon esculentum) plants under greenhouse conditions. Based on plant growth characteristics that were measured at 37, 51, and 65 days post-germination; we found that 10 or 50 ml (1 x 107 CFU/ml) direct addition of bacterial culture to soil surface caused a significant increase in tomato plants' height (above-ground fresh and dry weight) compared to direct foliage spraying. When pooled together, all bacterial treatment caused a significant increase in tomato height (ranging from 4.9 up to 25.8%), fresh weight (13.2 up to 43.4%), and dry weight (42.37 up to 51.58%, with an average of 46.73%), compared to non-bacterial inoculated controls (non-treated, or IAA-sprayed) 65 days post-germination.
References
Adesemoye A. O. and Ugoji E. O. (2006). Evaluating Pseudomonas aeruginosa as plant growth-promoting rhizobacteria (PGPR) in West Africa. Archives of Phytopathology and Plant Protection, 42: 188-200.
Adesemoye A. O. and Egamberdieva D. (2013). Beneficial effects of plant growth-promoting rhizobacteria on improved crop production: Prospects for developing economies. In DK Maheshwari et al., (eds.), Bacteria in Agrobiology: Crop Productivity, DOI 10.1007/978-3-642-37241-42, ©Springer-Verlag Berlin Heidelberg2013.
Ali I., Kanhayuwa L., Rachdawong S. and Rakshit S. K. (2013). Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province, Thailand. Ann. Microbiol. 63: 887-895.
Ali S., Charles T. C. and Glick B. R. (2017). Endophytic phytohormones and their role in plant growth promotion. In: Doty SL (ed) Functional importance of the plant microbiome. Springer, Berlin, 2017; pp 89-105. https://doi.org/10.1007/978-3-319-65897-1_6
Ara I., Daram D., Baljinova T., Yamamura H., Bakir M. A., Suto M. and Ando K. (2013). Isolation, classifi-cation, phylogenetic analysis and scanning electron microscopy of halophilic, halotolerant and al-kaliphilic actinomycetes isolated from hypersaline soil. Afr J. Microbiol Res., 7: 298-308.
Arkhipchenko I. A., Shaposhnikov A. I. and Kravchenko L. V. (2006). Tryptophan concentration of animal wastes and organic fertilizers. App. Soil Ecol., 34: 62-64.
Bibi F., Naseer M. I., Hassan A. M., Yasir M., Al-Ghamdi A. A. K. and Azhar E. I. (2018). Diversity and antagonistic potential of bacteria isolated from marine grass Halodule uninervis. 3 Biotech. 8: 48. https:// doi.org/ 10.1007/s13205-017-1066-1
Bric J. M., Bostock R. M. and Silverstone S. E. (1991). Rapid In situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol., 57: 535-538.
Cassán F., Vanderleyden J. and Spaepen S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J. Plant Growth Regul., 33: 440-459.
Díaz-Zorita M. and Fernández-Canigia M. V. (2009). Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. European. J. Soil Biol., 45: 3-11.
Egamberdiyeva D., (2007). The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Eco., 36: 184-189.
Egamberdieva D., Jabborova D. and Hashem A. (2015). Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J. Biol. Sci. 22:773-779.
Ghosh P. K., Saha P., Mayilraj S. and Maiti T. K. (2013). Role of IAA metabolizing enzymes on production of IAA in root, nodule of Cajanus cajan and its PGP Rhizobium sp. Biocatal Agric. Biotechnol., 2:234-239.
Glickmann E. and Dessaux Y. (1994). A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol., 61:793-796.
Gordon A. S. and Weber R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiol., 26: 192195.
Goswami D., Dhandhukia P., Patel P. and Thakker J. N. (2014). Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res., 169: 66-75.
Gutierrez T., Morris G. and Green D. H. (2009a). Yield and physicochemical properties of EPS from Halomonas sp. strain TG39 identifies a role for protein and anionic residues (sulfate and phosphate) in emulsification of n-hexadecane. Biotech Bioeng., 103: 207-216. https://doi.org/10.1002/bit.22218
Gutierrez C. K., Matsui G. Y., Lincoln D. E. and Lovell C. R. (2009b). Production of the phytohormone in-dole-3-acetic acid by estuarine species of the genus Vibrio. App. Environ. Microbiol., 75: 2253-2258.
Islam F., Yasmeen T., Arif M. S., Ali S., Ali B., Hameed S., and Zhou W. (2016). Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility. Plant Growth Reg., 80: 23-36.
Kerkar S., Raiker L., Tiwari A., Mayilraj S. and Dastager S. (2012). Biofilm-associated indole acetic acid producing bacteria and their impact in the proliferation of biofilm mats in solar salterns. Biol. Cell Mol. Biol., 3: 454-460.
Khan A. L., Waqas M., Hussain J., Al-Harrasi A., Al-Rawahi A., Al-Hosni K., Kim M. J., Adnan M. and Lee I. J. (2014). Endo-phytes Aspergillus caespitosus LK12 and Phoma sp.LK13 of Moringa peregrine produce gibberellins and improve rice plant growth. J. Plant Interact., 9:731-737.
Kumar S., Stecher G. and Tamura K. (2016). MEGA7. Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Bio. Evol., 33: 1870-1874.
Mei C. and Flinn B. S. (2010). The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat. Biotechnol., 4: 81-95.
Mesbah N. M., Abou-El-Ela S. H. and Wiegel J. (2007). Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of Wadi An Natrun. Egy. Microb. Ecol., 54: 598-617.
Miliūtė I. and Buzaitė O. (2011). IAA production and other plant growth promoting traits of endophytis bacteria from apple tree. Biologija, 57 : 98-102. http://dx.doi.org/10.6001/biologija.v57i2.1835
Odoh C. K., (2017). Plant growth promoting rhizobacteria (PGPR): A Bio-protectant bioinoculant for sustainable agrobiology. A Review. Int. J. Adv. Res. Biol. Sci., 4: 123-142.
Oren A., (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotech., 28: 56-63.
Patten C. L. and Glick B. R. (1996). Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbio., 42: 207-220.
Patten C. L. and Glick B. R. (2002). Role of Pseudomanas putida indolactic acid in development of the host plant root system. Ap. Environ. Microb., 68: 3795-3801.
Sambrook J., Fritsch E. F. and Maniatis T. (2009). Molecular cloning: a laboratory manual by Joe Sambrook, 3rd ed. Cold Spring Harbor Laboratory Press, NewYork., 2009.
Shahzad R., Khan A. L., Bilal S., Waqas M., Kang S. M. and Lee I. J. (2017). Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ. Exp. Bot., 136: 68-77.10.1016/j.envexpbot.
Solomon E. and Viswalingam K. (2013). Isolation, characterization of halo-tolerant bacteria and its biotechnological potentials. Int. J. Sci. Engineer Res., 4: 1-7.
Sorty A. M., Meena K. K., Choudhary K., Bitla U. M., Minhas P. S. and Krishnani K. K. (2016). Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl. Biochem. Biotechnol., 180: 872-882. doi: 10.1007/s12010-016-2139-z
Sukumar P., Legue V., Vayssieres A., Martin F., Tuskan G. A. and Kalluri U. C. (2013). Involvement of auxin pathways in modulating root architecture during beneficial plant–microorganism interactions. Plant Cell Environ., 36: 909-919.
Surve V. V., Patil M. U. and Dharmadekari S. M. (2012). Moderately halophilic bacteria from solar salt pans of Ribander, Goa: a comparative study. Intl. J. Adv. Biotech. Res., 3: 635-643.
Swain M. R., Naskar S. K. and Ray R. C. (2007). Indole 3-acetic acid production and effect on sprouting of yam. (Dioscorea rotundata L) Minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Polish J. Microbiol., 56: 103-110.
Taher A.G., (1999). Inland saline lakes of Wadi El Natrun depression, Egypt. Int. J. Salt Lake Res., 8: 149-69.
Vendan R. T., Yu Y. J., Lee S. H. and Rhee Y. H. (2010). Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. J. Microbiol., 48: 559-565. doi: 10.1007/s12275-010-0082-1.
Vahed S. Z., Forouhandeh H., Hassanzadeh S., Klenk H. P., Hejazi M. A. and Hejazi M. S. (2011). Isolation and characterization of halophilic bacteria from Urmia Lake in Iran. Microbiol., 80: 834-841.
Venkateswarlu B. and Shanker A. K. (2009). Climate change and agriculture: adaptation and mitigation strategies. Indian J. Agro., 54: 226-230.
Yasmin F., Othman R., Sijam K. and Saad M. S. (2009). Characterization of beneficial properties of plant growth-promoting rhizobacteria isolated from sweet potato rhizosphere. Afr. J. Microbiol. Res., 3: 815-821.
Zhao L., Xu Y., Sun R., Deng Z., Yang W. and Wei G. (2011). Identification and characterization of the endophytic plant growth prompter Bacillus cereus strain MQ23 isolated from Sophoraalopecu roides root nodules. Brazil J. Microbiol., 42: 567-575.