MOLECULAR CHARACTERIZATION AND GENETIC RELATIONSHIPS AMONG SOME TOMATO GENOTYPES AS REVEALED BY ISSR AND SCoT MARKERS

Authors

  • M. A. ABDEIN Biology Department, Faculty of Arts and Science, Northern Border University, Rafha
  • D. ABD EL-MONEIM Plant Production Department (Genetic Branch), Faculty of Agricultural and Environmental Sciences - Arish University
  • SAHAR S. TAHA Vegetable Crops Department, Faculty of Agriculture, Cairo University
  • WIDAD S. M. AL-JUHANI Biology Department, Faculty of Applied Science, Umm Al-Qura University, Makkah
  • SALWA E. MOHAMED Molecular Biology Department, Genetic Engineering and Biotechnology Institute Sadat City University

Abstract

Two molecular marker systems, SCoT and ISSR were used for genetic diversity analysis of eight tomato (Lycopersicum esculentum L.) genotypes. The molecular markers revealed robust amplification profiles. Using seven selected SCoT primers 63 bands were generated, of which 38 (60.3%) were polymorphic. Six selected ISSR primers amplified 55 bands with 26 (47.3%) being polymorphic. (PIC), (EMR), (MI) and (Rp) of the primers were calculated for the two marker systems and all the parameters examined found to be higher in SCoT system. SCoT and ISSR revealed different genetic similarity among the eight tomato genotypes. SCoT and ISSR techniques characterized the studied genotypes by many unique markers throughout 12 unique markers, for every technique. Genotype Super Queen showed 10 pos-tive genotype specific markers; followed by genotype Hellfrucht showed six geno-type specific markers (five positives and one negative) indicating that these markers may be associated with a feature that has not yet been determined. Consequently, SCoT markers would be a better choice compared to ISSR markers in characterization of tomato genotypes. Also, it can be concluded that in future study of genetic diversity like here more than one marker systems should be used for higher genetic resolution of the genome.

References

Abu Qamar, M., Z. H. Liu, J. D. Faris, S. Chao, M. C. Edwards, Z. Lai, J. D. Franckowiak and T. L. Friesen (2008). A region of barley chro-mosome 6H harbors multiple ma-jor genes associated with net type net blotch resistance. Theor. Appl. Genet., 117: 1261-1270.

Adawy, S. S., E. A. Hussein, M. M. Saker and H. A. El-Itriby (2004). Intra and Inter varietal variation of Up-per Egypt date palm cultivars (Phoenix dactylifera L.): 1. As re-vealed by RAPD and ISSR mark-ers. Proc. Int. Conf. Genet. Eng. & Appl., Sharm El-Sheikh, South Si-nai, Egypt, (April 8-11, 2004). Vol. I: 165-179.

Aguilera, J. G., L. A. Pessoni, G. B. Ro-drigues, A. Y. Elsayed, D. J. H. Silva and E. G. Barros (2011). Ge-netic variability by ISSR markers in tomato (Solanum lycopersicum Mill.). Rev. Bras. Cienc. Agrar., 6: 243-252.

Amirmoradi, B., R. Talebi and E. Karami (2012). Comparison of genetic var-iation and differentiation among annual Cicer species using start codon targeted (SCoT) polymor-phism, DAMD-PCR, and ISSR markers. Plant Systematics and Evolution, 298: 1679-1689.

Andersen, J. R. and L. Thomas (2003). Functional markers in plants. Trends in Plant Science, 8: 554-560.

Anderson, J. A., G. A. Churchill and J. E. Autrique (1993). Optimizing pa-rental selection for genetic linkage maps. Genome, 36: 181-186.

Bhattacharyya, P., S. Kumaria, S. Kumar and P. Tandon (2013). Start Codon Targeted (SCoT) marker reveals genetic diversity of Dendrobium nobile Lindl. an endangered me-dicinal orchid species. Gene, 529: 21-26.

Collard, B. C. and D. J. Mackill (2009). Start Codon Targted (SCoT) pol-ymorphism: A simple novel DNA marker technique for generating gene targeted markers in plants. Plant Mol. Bio., 27: 86-93.

Doyle, J. J. and J. L. Doyle (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 19: 11-15.

Edris, S., S. Abo-Aba, M. M. Algandaby, A. M. Ramadan, N. O. Gadalla, M. A. Al-Kordy, J. S. M. Sabir, F. M. Eldomyati, A. M. Alzhairy and A. Bahieldin (2014). Molecular char-acterization of tomato cultivars grown in Saudi Arabia and differ-ing in earliness of fruit develop-ment as revealed by AFLP and ISSR. Life Science Journal, 11: 602-612.

El-Awady, M. A. M., A. A. E. El-Tarras and M. M. Hassan (2012). Genetic diversity and DNA fingerprint study in tomato (Solanum lycopersicum L.) cultivars grown in Egypt using simple sequence repeats (SSR) markers. African Journal of Biotechnology, 11: 16233-16240.

El-Hady, A. E., A. A. Haiba, N. R. El-Hamid and A. A. Rizkalla (2010). Phylogenetic diversity and rela-tionship of some tomato varieties by electrophoretic protein and RAPD analysis. Journal of Ameri-can Science, 6: 434-441.

Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International Journal of Plant Ge-nomics, 10: 1-52.

Foolad, M. R. and A. Sharma (2005). Molecular markers as selection tools in tomato breeding. Acta Hort., 695: 225-240. In: The use of molecular markers for the identifi-cation of tomato cultivars. Molecu-lar Tools for Screening Biodiversi-ty. Edited by Angela Karp, Peter G. Isaac and David S. Ingram. Published in 1998 by Chapman & Hall, London. ISBN-13, 978-94-010-6496-5.

Gorji, A. M., P. Poczai, Z. Polgar and J. Taller (2011). Efficiency of arbi-trarily amplified dominant markers (SCoT, ISSR and RAPD) for diag-nostic fingerprinting in tetraploid potato. Am. J. Pot. Res., 88: 226-237.

Grativol, C., C. Da Fonseca and L. Medeiros (2011). High efficiency and reliability of inter-simple se-quence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions. Mol. Biol. Rep., 38: 4245-4256.

Guo, D., J. Y. Zhang and C. H. Liu (2012). Genetic diversity in some grape varieties revealed by SCoT analyses. Mol. Biol. Rep., 39: 5307-5313.

Gupta, P. K. and S. Rustgi (2004). Mo-lecular markers from the tran-scribe/expressed region of the ge-nome in higher plants. Functional & Integrative Genomics, 4: 139-162.

Hamidi, H., R. Talebi and F. Keshavarzi (2014). Comparative efficiency of functional gene-based markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP) with ISSR markers for diagnostic fingerprinting in wheat (Triticum aestivum L.). Cereal Res. Commun., 42: 558-567.

Havlíčková, L., E. Jozová, A. Rychlá, M. Klima, V. Kučera and V. Čurn (2014). Genetic diversity assess-ment in winter oilseed rape (Bras-sica napus L.) collection using AFLP, ISSR and SSR markers. Czech Journal of Genetics and Plant Breeding, 50: 216-225.

Henareh, M., A. Dursun, B. Abdollahi-Mandoulakani and K. Haliloğlu (2016). Assessment of genetic di-versity in tomato landraces using ISSR Markers. Genetika, 48: 25-35.

Hussein, A. E., A. A. Mohamed, S. Attia and S. S. Adawy (2006). Molecu-lar characterization and genetic re-lationships among cotton geno-types 1-RAPD, ISSR and SSR analysis. Arab. J. Biotech., 9: 313-328.

Khodadadi, M., M. H. Fotokian and M. Miransari (2011). Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Aust. J. Crop Sci., 5: 17-24.

Kochieva, E. Z., N. N. Ryzhova, I. A. Khrapalova and V. A. Pukhalskyi (2002). Genetic diversity and phy-logenetic relationships in the genus Lycopersicon (Tourn.) Mill. as re-vealed by inter-simple sequence repeat (ISSR) analysis. Russian Journal of Genetics., 38: 958-966.

Kumar, M., G. P. Mishra, R. Singh, J. Kumar, P. K. Naik and S. B. Singh (2009). Correspondence of ISSR and RAPD markers for compara-tive analysis of genetic diversity among different apricot genotypes from cold arid deserts of trans Himalayas. Physiol. Mol. Biol. Plants, 15: 225-236.

Maniruzzaman, M. (2014). Polymorphism study in barley (Hordeum vulgare) genotypes using microsatellite (SSR) markers. Bangladesh J. Agril. Res., 39: 33-45.

Mansour, A., J. T. Silva, S. Edris and R. A. A. Younis (2010). Comparative assessment of genetic diversity in tomato cultivating using IRAP, ISSR and RAPD molecular markers. Genes, Genomes and Ge-nomics, 4: 41-47.

Mohammadi, S. A. and B. M. Prasanna (2003). Analysis of genetic diver-sity in crop plants salient statistical tools and considerations. Crop Sci., 43: 1236-1248.

Nagaraju, J., D. K. Reddy, G. M. Nagaraja and B. N. Sethuraman (2001). Comparison of multilocus RFLPs and PCR-based marker sys-tems for genetic analysis of the silkworm, Bombyxmori. Heredity, 86: 588-597.

Naz, S., K. Zafrullah, K. Shahzadhi and N. Munir (2013). Assessment of genetic diversity within germplasm accessions in tomato using mor-phological and molecular markers. Journal of Animal and Plant Sci-ences, 23: 1099-1106.

Powell, W., C. Morgante, M. Hanafey, J. Vogel, S. Tingey and L. A. Rafa (1996). The utility of RFLP, RAPD, AFLP and SSR (microsat-ellite) markers for germplasm analysis. Mol., Breed., 2: 225-238.

Prevost, A. and M. J. Wilkinson (1999). A new system of comparing PCR primers applied to ISSR finger-printing of potato cultivars. Theor. Appl. Genet., 1: 107-112.

Reddy, M. P., N. Sarla and E. A. Siddiq (2002). Inter simple sequence re-peat (ISSR) polymorphism and its application in plant breeding. Euphytica, 128: 9-17.

Santalla, P. and M. R. Davey (1998). Ge-netic diversity in mung bean germplasm revealed by RAPD markers. Plant Breed., 117: 473-478.

Shahlaei, A., S. Torabi and M. Khosroshahli (2014). Efficiacy of SCoT and ISSR markers in as-sessment of tomato (Lycopersicum esculentum Mill.) genetic diversi-ty. International Journal of Biosci-ences, 5: 14-22.

Sharifova, S. S., S. P. Mehdiyeva and M. A. Abbasov (2017). Analysis of genetic diversity among different tomato genotypes using ISSR DNA marker. Genetika, 49: 31-42.

Singh, M., N. P. Singh, S. Arya, B. Singh and Vaishali (2014). Diversity analysis of tomato germplasm (Lycopersicom esculentum) mark-ers using SSR. International Jour-nal of Agricultural Science and Research, 4: 41-48.

Svobodova, L. L., L. Stemberková, M. Hanusová and L. Kučera (2011). Evaluation of barley genotypes for resistance to Pyrenophora teres us-ing molecular markers. J. of Life Sci., 5: 497-502.

Tatikonda, L., S. P. Wani, S. Kannan, N. Beerelli,T. K. Sreedevi, D. A. Hoisington, P. Devi and R. A. Varshney (2009). AFLP-based mo-lecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci., 176: 505-513.

Terzopoulos, P. J. and P. J. Bebeli (2008). DNA and morphological diversity of selected Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulture, 116: 354-361.

Thudi, M., R. Manthena, S. P. Wani, L. Tatikonda, D. A. Hoisington and R. A. Varshney (2010). Analysis of genetic diversity in Pongamia (Pongamia pinnata L. Pierrre) us-ing AFLP markers. J. Plant Biochem. Biotech., 19: 209-216.

Xiong, F., R. Zhong, Z. Han, J. Jiang, L. He, W. Zhuang and R. Tang (2011). Start codon targeted poly-morphism for evaluation of func-tional genetic variation and rela-tionships in cultivated peanut (Arachis hypogaea L.) genotypes. Mol. Biol. Rep., 38: 3487-3494.

Yang, X. and C. F. Quiros (1993). Identi-fication and classification of celery cultivars with RAPD markers. Theor. Appl. Genet., 86: 205-212.

Downloads

Published

2018-09-06

Issue

Section

Articles