Comparison of The Expression Level of Two Sesquiterpene Cyclases Genes in The Transformed Hairy Roots of Artemisia annua L. Plant

Authors

  • SHEREEN ELKHOLY Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Centre (ARC), Giza, Egypt Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
  • M. SHARAF-ELDIN Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA Medicinal and Aromatic Plants Dept., National Research Centre (NRC), Cairo, Egypt

Abstract

As early as 500 BC, ancient Chinese scripts reported the use of the annual herb, Artemisia annua, for treatment of “fever” (Klayman, 1985). Much later, Qinghaosu, artemisinin, a sesquiterpene lactone, was isolated in pure form from the aerial parts of Artemisia annua L. (annual wormwood) plants, and its structure was determined in 1979 (Klayman, 1985). Artemisinin is currently the best therapeutic against both drugresistant and cerebral malaria-causing strains of Plasmodium falciparum. It has since become popular throughout Southeast Asia and Africa, where malaria has become resistant to nearly all anti-malarial drugs, including chloroquine, quinine, mefloquine, and Fansidar (Newton et al., 1999).
Artemisinin is an important thera- peutic that, along with its derivatives, is a proven treatment for a number of diseases besides malaria (Dhingra et al., 2000), other parasites like schistosomiasis (Utzinger et al., 2001; Borrmann et al., 2001), and more recently cancer and Hepatitis B (Romero et al., 2005). Artemisinin has also been shown to be effective against a variety of cancer cell lines including breast cancer, human leukemia, colon, and small-cell lung carcinomas (Efferth et al., 2001; Singh and Lai 2001). Furthermore, artemisinin may be especially effective in treating drug resistant cancers (Sadava et al., 2002; Efferth et al., 2002). However, the drug is in short supply as its complex structure still requires that it be extracted from plants. Although others are working on a synthetic trioxolane (Vennerstrom et al., 2004) and bacterial produced artemis- inin precursors (Martin et al., 2003) that may replace artemisinin as an inexpensive therapeutic, A. annua plants are still the only current source of the drug.
In the whole plant artemisinin has been reported to accumulate in leaves, small green stems, buds, flowers and seeds (Liersch et al., 1986; Ferreira et al., 1995) with highest levels in leaves and flowers. Neither artemisinin nor its pre- cursors, however, were detected in roots (Charles et al., 1990). Artemisinin content in full bloom flowers was 4-5 times higher than in leaves (Ferreira et al., 1995). Both leaves and flowers of A. annua have trichomes. Duke et al. (1994) showed that artemisinin is sequestered in the glandular trichomes of A. annua, and that glandless types produce no artemisinin (Ferreira et al., 1995). Some researchers reported that artemisinin content is highest just prior to flowering (Liersch et al., 1986; Woerden- bag et al., 1994) while others found an artemisinin peak at full flowering stage (Morales et al., 1993, Pras et al., 1991; Singh et al., 1988).

References

Abdin, M. Z., M. Israr, R. U. Rehman and S. K. Jain (2003). Artemisinin, a novel antimalarial drug: biochemical and molecular approach for enhanced production. Planta Med.,69: 289-299.

Back, K. and J. Chappell (1996). Identifying functional domains within terpene cyclases using a domain- swapping strategy. Proc. Natl. Acad. Sci., 93: 6841-6845.

Bertea, C. M., J. R. Freije, H. Van der Woude, F. W. Verstappen, L. Perk, V. Marquez, J. W. De Kraker., M. A. Posthumus, B. J. M. Jansen, A. E. De Groot, M.C.R Franssen and H. J. Bouwmeester (2005). Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med., 71: 40-47.

Borrmann, S., N. Szlezak., J. F. Faucher, P. B. Matsiegui, R. Neubauer, R. K. Biner, B. Lell and P. G. Kremsner (2001). Artesunate and praziquantel for the treatment of Schistosoma haematobium infections: a doubleblind, randomized, placebo-controlled study. J. Infect. Dis., 184: 1363-1366.

Bouwmeester, H. J. T. E. Wallaart, M. H. Janssen, B. van Loo, B. J. Jansen, M. A. Posthumus, C. O. Schmidt, J. W. De Kraker, W. A. Knig and M. C. Franssen (1999). Amorpha-4, 11-diene synthase catalyzes the first probable step in artemisinin biosynthesis. Phytochemistry, 52: 843-854

Charles, D. J., J. E. Simon, K. V. Wood and P. Heinstein (1990). Germplasm variation in artemisinin content of Artemisia annua using an alternative method of artemisinin analysis from crude plant extracts. J. Nat. Prod., 53: 157-160.

Dhingra, V., V. M Rao and L. Narasu (2000). Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci., 66: 279-300.

Duke, M. V., R. N. Paul, H. N. Elsohly, G. Sturtz and S. O. Duke (1994). Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. Int. J. Plant Sci., 155: 365-372.

Efferth, T., H. Dunstan, A. Sauerbrey, H. Miyachi and C. R. Chitambar (2001). The anti-malarial artesunate is also active against cancer. Int. J. Oncol., 18: 767-773.

Efferth, T., A. Olbrich and R. Bauer (2002). mRNA expression profiles for the response of human tumor cell lines to the anti-malarial drugs artesunate, arteether, and artemether. Biochem. Pharmacol., 64:617-623.

Ferreira, J. F. S., J. E. Simon and J. Janick (1995). Relationship of artemisinin content of tissue cultured, greenhouse and field grown plants of Artemisia anuua. Planta Med., 61: 351-355.

Klayman, D. L. (1985). Qinghaosu (artemisinin): an anti-malarial drug from China. Science, 228: 1049-1055.

Laughlin, J. C. (1995). The influence of distribution of anti-malarial constituents in Artemisia annua L. on time and method of harvest. Acta Hort., 390: 67-73.

Liersch, R., H. Soicke., C. Stehr and H. U. Tullner (1986). Formation of artemisinin in Artemisia annua during one vegetation period. Planta Med., 52: 387-390.

Liu, Y., H. C. Ye and G. F. Li (2002). Cloning, E. coli expression and molecular analysis of a novel sesquiterpene synthase gene from Artemisia annua. Acta Bot. Sin., 44: 1450-1455.

Martin, V. J., D. J. Pitera, S. T. Wither, J. D. Newman and J. D. Keasling (2003). Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol., 21: 796-802.

Matsushita, Y., W. K. Kang and B. V. Charlwood (1996). Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene, 172: 207-209.

Morales, D. J. and J. E. Charles (1993). Seasonal accumulation of artemisinin in Artemisia annua L., Acta. Hort., 344: 416-420.

Newton, P., and N. White (1999). New development in treatment and prevention. Annu. Rev. Med., 50: 179-192.

Pras, N., J. Visser, S., Batterman, H. Woerdenbag, T. Malingre and C. Lugt (1991). Phytochem. Anal., 2: 80-83.

Romero, M. R., T. Efferth, M. A. Serrano, B. Castano, R. I. Macias, O. Briz and J. J. Marin (2005). Effect of artemisinin/ artesunate as inhibitors of hepatitis B virus production in an ‘in vitro’ system. Antiviral Res., 68: 75-83.

Sadava, D., T. Phillips, C. Lin and S. E. Kane (2002). Transferrin overcomes drug resistance to artemisinin in human small-cell lung carcinoma cells. Cancer Lett., 179: 151-156.

Singh, A., R. A. Vishwakarma and A. Husain (1988). Evaluation of Artemisia annua satrins for higher artemisinin production. Planta Med., 54: 475-476.

Singh, N. and P. Lai (2001). Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells. Life Sci., 70: 49-56.

Utzinger, J., S. Xiao, E. K. N’Goran, R. Berquist and M. Tanner (2001). The potential of artemether for the control of schistosomiasis. Int. J. Parasitol., 31: 1549-1562.

Van Geldre, E., I. De Pauw, D. Inze, M. Van Montagu and E. Van den Eeckhout (2000). Cloning and molecular analysis of two new sesquiterpene cyclases from Artemisia annua L. Plant Sci., 158: 163-171.

Van Phiet, H., H. Ngoc, I. Ognianou, G. Dien and N. Van Hung (1992). 7th Asian Symp. on Med. Plants, Spices, and other Nat. Prod. (ASOMPS VII) Manila, Phillipines. W05.

Vennerstrom J. L., S. Arbe-Barnes, R. Brun, S. A. Charman, F. C. K. Chiu, J. Chollet, Y. Dong, A. Dorn, D. Hunziker, H. Matile, K. McIntosh, M. Padmanilayam, J. S. Tomas, C. Scheurer, B. Scorneaux, Y. Tang, H. Urwyler, S. Wittlin and W. N. Charman (2004). Identification of an antimalarial synthetic trioxolane drug development candidate. Nature, 430: 900-904.

Vogeli, U. and J. Chappell (1988). Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol., 88: 1291-1296.

Woerdenbag, H. J., N. Pras, N. G. Chan, B. T. Bang and R. Bos (1994). Artemisinin related sesquiterpenes, and essential oil in Artemisia annua during a vegetative period in Vietnam. Planta Med., 60: 272-275.

Weathers, P. J., G. Bunk and M. C. McCoy (2005). The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cell. Dev. Biol. Plant, 41: 47-53.

Downloads

Published

2016-01-08

Issue

Section

Articles