PURIFICATION, CHARACTERISATION AND CLONING OF -1,3 GLUCANASE GENE FROM Trichoderma harzinum

Authors

  • NOHA F. EL-BADAWY Plant Pathology Research institute, ARC, Giza, Egypt 2.
  • R. S. YEHIA Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt

Abstract

Dual culture technique was used to evaluate the effect of three species of Trichoderma that showed a potential control of Fusarium oxysporium. Trichoderma harzianum showed maximum growth inhibition (79.3%) followed by Trichoderma viridi (68.5%) and Trichoderma longibrachiatum (44.3%). β-1,3-glucanases was purified from Trichoderma harzianum to homogeneity by ion exchange chromatography on DEAE-Sephacel and gel filtration on Sephadex G100. A typical procedure provided 20-fold purification with 11.9% yield. The apparent molecular mass was 30 kD and it was active on a broad pH range, however the maximal activity was detected at pH 7.5. The optimum temperature of the β-1,3-glucanase was 55C. Polymerase chain reaction (PCR) was used to amplify a fragment about 600 bp from β-1,3 gluanase gene using specific glu forward and reverse primers. The eluted DNA was ligated into pGEM-T-Easy vector and transformed into competent E. coli JM109. White transformed colony, named T1glu, containing recombinant plasmid was validated by PCR using both glu forward and reverse and M13 forward and reverse primers to confirm the presence of β 1,3 glucanase gene insert in right orientation whereas, the fragment amplified with glu forward and glu reverse primers was 600 bp. Partial sequence of the amplified DNA fragment showed 97% sequence homology with the other published sequences.

References

Abo-Elyousr, K. A. M., I. Sobhy, I. Abdel-Hafez and I. Abdel-Rahim (2014). Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. J. Phytpathol., 162: 567-574.

Benítez, T., A. M. Rincón, M. C. Limón and A. C. Codón (2004). Biocontrol mechanisms of Trichoderma strains. Int Microbiol., 7: 249-260.

Bolar, J. P., J. L. Norelli, K. W. Wong, C. K. Hayes, G. E. Harman and H. S. Aldwinckle (2000). Expression of endochitinase from Trichoderma harzianum in transgenic apple increases to apple scab and reduces vigor. Phytopathology, 90: 72-77.

Bolar, J. P., J. L. Norelli, G. E. Harman, S. K. Brown and H. S. Aldwinckle (2001). Synergistic activity of endo-chitinase and exo-chitinase from Trichoderma atrovireade (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Reserch, 1067: 1-11.

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem., 72: 248-254.

Burner, R. L. (1964). Determination of reducing sugar value 3,5-dinitrosalicylic acid method. Methods Carbohydr. Chem., 4: 67-71.

El-Katatny, M. H., W. Somitsch, K. H. Robra, M. S. El-Katatny and G. M. Gübitz (2000). Production of Chitinase and β-1,3 glucanase by Trichoderma harzianum for Control of the Phytopathogenic Fungus Sclerotium rolfsii. Food Technol. Biotechnol., 38: 173-180.

Gau, A. E., M. Koutb, M. Piotrowski and K. Kloppstech (2004). Accumulation of pathogenesisrelated proteins in apoplast of a susceptible cultivar of apple (Malus domestica cv. Elstar) after infection by Venturia inaequalis and constitutive expression of PR genes in the resistant cultivar Remo. Eur. J. Plant Pathol., 110: 703-711.

Kauffmann, S., M. Legrand, P. Geoffroy and B. Fritig (1987). Biological function of pathogenesis-related protein: Four PR proteins of tobac-co-leaves have β-1,3-glucanase ac-tivity. EMBO Journal, 6: 3209-3212.

Kurosaki, U., Y. Tokitoh and A. Nishi (1991). Purification and characterization of wall-bound β-1,3-glucanase in cultured carrot cells. Plant Science, 77: 21-28.

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685.

Lawrence, C. B., N. P. Singh, J. Qiu, R. G. Gardner and S. Tuzun (2000). Constitutive hydrolytic enzymes are associated with polygenic resistance of tomato to Alternaria solani and may function as an elicitor release mechanism. Physiol. Mol. Plant Pathol., 57: 211-220.

Limón, M. C., J. A. Pintor-Toro and T. Benítez (1999). Increased antifungal activity of Trichoderma harzianum transformants that over-express a 33 kDa chitinase. Phyto-pathology, 89: 254-261.

Liu, M., Z. X. Sun, J. Zhu, T. Xu, G. E. Harman and M. Lorito (2004). Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. Journal of Zhejiang University Science, 5: 133-136.

Lorito, M., C. K. Hayes, A. Di Pietro, S. L. Woo and G. E. Harman (1994). Purification, characterization, and synergistic activity of a glucan 1,3-β-glucosidase and an N-acetyl-β-glucosaminidase from Trichoderma harzianum. Phyto-pathology, 84: 398-405.

Lorito, M., S. L. Woo, I. Garcia, G. Colucci, G. E. Harman, J. A. Pintor-Toro, E. Filippone, S. Muccifora, C. B. Lawrence, A. Zoina, S. Tuzun and F. Scala (1998). Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc. Natl. Acad. Sci. USA, 95: 7860-7865.

Margolles-Clark, E., C. K. Hayes, G. E. Harman and M. E. Penttilä (1996). Improved production of Trichoderma harzianum endo-chitinase by expression in Trichoderma reesei. Appl. Environ. Microbiol., 62: 2145-2151.

Migheli, Q., L. González-Candelas, L. Dealessi, A. Camponogara and D. Ramón-Vidal (1998). Transformants of Trichoderma longibrachiatum overexpressing the β-1,4-glucanase gene egl1 show enhanced biocontrol of Pythium ultimum on cucumber. Phyto-pathology, 88: 673-677.

Mondéjar, R. L., M. Ros and J. A. Pascual (2011). Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol. Control., 56: 59-66.

Morton, D. T. and N. H. Stroube (1955). Antagonidtic and stimulatory effects of microorganism upon Sclerotium rolls. Phytopathology, 45: 419-420.

Mukherjee, M., P. K. Mukherjee, B. A. Horwitz, C. Zachow, G. berg and S. Zeilinger (2012). Trichoderma-Plant-Pathogen Interactions: Advances in Genetics of Biological Control. Indian J. Microbiol., 52: 522-529.

Noronha, E. F. and C. J. Ulhoa (2000). Characterization of a 29-kDa β-1,3-glucanase from Trichoderma harzianum. FEMS Microbiol. Lett., 183: 119-123.

Obaiua, A. O. and E. Oti (2007). Antagonistic properties of Trichoderma viridi on post-harvest cassava root rot pathogens. African Journal of Biotechnology, 6: 2447-2450.

Odjakova, M. and C. Hadjiivanova (2001). The complexly of pathogen defense in plants. Journal of Plant Physiology. 27: 101-109.

Pandey, S., M. Shahid, M. Srivastava, A. Sharma, A. Singh and V. Kumar (2014). Isolation purification and characterization of glucanase enzyme isolated from antagonistic fungus Trichoderma species. Int. J. Sci. Eng. Res., 5: 646-649.

Pitson, S. M., R. J. Seviour and B. M. McDougall (1993). Noncellulolytic fungal β-glucanases: their physiology and regulation. Enz. Microbiol. Technol., 15: 178-192.

Ponstein, A. S., S. A. Bres-Vloeman, M. B. Sela-Buurloge, P. J. M. Vanden Elzen, L. S. Melchers and B. J. C. comelissen (1994). A novel pathogen and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiology, 104: 109-118.

Ramot, O., R. Cohen-Kupiec and I. Chet (2000). Regulation of β-1,3-glucanase by carbon starvation in the mycoparasite Trichoderma harzianum. Mycol. Res., 104: 415-420.

Schirmbock, M., M. Lorito, Y. wang, L. Hayes, C. K. Arisan-Atac, I. F. Scala, G. E. Harman and C. P. Kubicek (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma against phytopathogenic fungi. Apple. Environ. Microbiol., 60: 4364-4370.

Singh, A., S. Mohd, M. Srivastava, V. Kumar and A. Bansal (2013). Antagonistic activity of Trichoderma viridi isolate against different pathogens of Fusarium oxysporium isolate from legume crop of UP. Progressive Research 8: 47-50.

Shinya, T., R. Menard, I. Kozone, H. Matsuoka, N. Shibuya, S. Kauffmann, K. Matsuoka and M. Saito (2006). Novel -1,3, 1,6 oligoglucan elicitor from Alternaria alternata 102 for defense response in tobacco. FEBS Journal, 273: 2421-2431.

Srivastava, M., A. Singh and D. K. Srivastava (2014). Morphological and molecular characterization of Trichoderma isolates: An antagonist against soil borne pathogens. International Journal of Science and Research (IJSR) Vol. 3, Issue 7, July 2014.

Vleeshouwers, V. G. A. A., W. Van Dooijeweert, F. Govers, S. Kamoun and L. T. Colon (2000). Does basal PR gene expression in Solanum species contribute to non-specific resistance to Phytophthora infestans?. Physiol. Mol. Plant Pathol., 57: 35-42.

Wang, Y., A. P. Kausch, J. M. Chandlee, H. Luo, B. A. Ruemmele, M. Browing, N. Jackson and M. R. Goldsmith (2003). Co-transfer and expression of chitinase, glucanase, and bar genes in creeping bentgrass for conferring fungal disease resistance. Plant Science, 165: 497-506.

Downloads

Published

2016-07-14

Issue

Section

Articles