MICROSATELLITE MARKERS POLYMORPHISM BETWEEN TWO EGYPTIAN GOAT POPULATIONS (Capra hircus)

Authors

  • M. A. EL-SAYED Animal Genetic Resources Depart., National Gene Bank, Agric. Res. Center, Giza, Egypt.
  • A. AL-SOUDY Animal Genetic Resources Depart., National Gene Bank, Agric. Res. Center, Giza, Egypt.
  • A. A. EL BADAWY Animal Production Research Institute, Agricultural Research Center, Giza, Egypt

Abstract

Two native goat populations present in El-Farafra and Siwa oases, located in the Western Desert of Egypt were geno-typed using ten microsatellite molecular markers (SSR). Blood samples taken from a total of 34 individual goats, 14 from Farafra and 20 from Siwa, were subjected to DNA extraction and subsequently to SSR-PCR amplification. The number of alleles ranged from two for MAF70 marker to seven for OarFCB48 and SRCRSP8 loci, the average number per population for Farafra goats was 3.0 and 3.4 for Siwa goats with a total number of a 42 alleles for both populations. The mean observed heterozygosity (Ho) and expected heterozygosity (HE) for both populations varied from 0.21 to 0.24 and 0.56 to 0.59, respectively. Fixation indices revealed a 0.7063 variation referring to differences among individuals versus total variance (Fit). While, among populations differences versus total variance had a lower fixation index (Fst = 0.2371) indicating low level of genetic differentiation between Farafra and Siwa populations. A pair wise difference between Farafra and Siwa goat populations was (0.6151) based on among breeds F index (Fis).The highest PIC was observed for SRCRSP8 microsatellite marker (0.791) and the lowest PIC was 0.375 for SRCRSP23. The average PIC of the ten markers was 0.530 and 0.570 for Farafra and Siwa goat populations, respectively, which indicated that the ten microsatellite markers contained highly polymorphic loci in both Egyptian goat populations. In the genetic diversity analysis, microsatellite markers with PIC>0.7 were taken as the most ideal selected markers. From the selected microsatellite markers in the present study, the PIC of OarFCB48 and SRCRSP8 (Siwa) exceeded 0.7 which indicated that these loci could be used as genetic markers for genetic diversity analysis of Siwa goat population. The markers generated by OarFCB48 and SRCRSP8 loci could be utilized in marker assisted selection (MAS) to improve the performance of Egyptian goat populations.

References

Agha, S. H., F. Pilla, S. Galal, I. Shaat, M. D. Andrea, S. Reale, A. Z. A. Abdelsalam and M. H. Li (2008). Genetic diversity in Egyptian and Italian goat breeds measured with microsatellite polymorphism. J. Anim. Breed. Genet., 125: 194-200.

Araújo, A. M. (2006). Genetic diversity between herds of Alpine and Saanen dairy goats and the naturalized Brazilian Moxotó breed. Genetics and Molecular Biology, 29: 67-74.

Barker, J. S. F. (1994). A global protocol for determining genetic distances among domestic livestock breeds. In Proc. 5th World Cong. Genet Appl. Livestock Prod., Guelph, Canada, 21: 501-508.

Botstein, D., R. L. White, M. Skolnick and R. W. Davis (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet., 32: 314-331.

Dixit, E., S. Boulant, Y. Zhang, A. S. Lee, C. Odendall, B. Shum, N. Hacohen, Z. J. Chen, S. P. Whelan, M. Fransen, M. L. Nibert, G. Superti-Furga and J. C. Kagan (2010). Peroxisomes are signaling platforms for antiviral innate immunity. Cell, 141: 668-681.

Elbeltagy, A. R. (2012). Characterization and value addition to local breeds and their products in the Near East and North Africa. Regional Workshop Rabat, Morocco 19-21.

El-Seoudy, A. A., N. M. Abdel Gawad, A. M. Abu-Shady and A. Z. E. Abdelsalam (2005). Biochemical and molecular characterization of some Egyptian goat breeds. Egypt. J. Genet. Cytol., 34: 63-79.

FAO, (2004). Secondary guidelines for development of national farm animal genetic resources management plans. Measurement of domestic animal diversity (MoDAD): Recommended microsatellite markers, Rome, Italy.

FAO, (2011). Commission on Genetic Resources for Food and Agriculture thirteenth Regular Session, Draft Guidelines on Molecular Genetic Characterization of Animal Genetic Resources, Rome.

Galal, S., F. Abdel Rasoul, M. R. Anous and I. Shaat (2005). Small ruminant breeds of Egypt. In "Characterization of small ruminant breeds in West Asia and North Africa, Vol.2. North Africa.", Ed. Luis Iňiguez, International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria, p. 141-193.

Hassanane, M. S., A. F. El-Kholy, A. R. Abd El-Rahman and Rasha M. Somida (2010). Genetic variations of two Egyptian goat breeds using microsatellite markers. Egyptian J. Anim. Prod., 47: 93-105.

Kimura, M. and J. F. Crow (1964).The number of alleles that can be maintained in a finite population. Genetic, 68:47.

Li, M. H., S. H. Zhao, C. Bian, H. Sheng Wang, H. Wei, B. Liu, M. Yu, B. Fan, S. L. Chen, M. J. Zhu, S. J. Li, T. A. Xiong and K. Li (2002). Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis. Genet. Sel. Evol., 34: 729-744.

Li, Y., C. Shilin, M. Ning, Z. Shuhhing, C. Yongxin and S. Ciwandobuj (1999). Random amplified polymorphic DNA study of Tibetan Cashmere goat. Sixth world congress on genetics applied to live-stock production, Armidale, NSW, Australia.

Liu, Y., J. R. Key and X. Wang (2008). The influence of changes in cloud cover on recent surface temperature trends in the Arctic. Journal of Climate, 21: 705-715.

Luikart, G., M. P. Biju-Duval, O. Ertugrul, Y. Zagdsuren, C. Maudet and P. Taberlet (1999). Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus). Anim. Genet., 30: 431-438.

Mahmoudi, B., M. Bayat R. Sadeghi, M. Babayev and H. Abdollahi (2010). Genetic diversity among three goat populations assessed by microsatellite DNA Markers in Iran. Glob. Vet., 4: 118-124.

Mahrous, K. F., Y. M. Saleha Alakilli, M. Lamiaa Salem, H. Sekena Abd El-Aziem and A. El-Hanafy (2013). Genetic diversity in Egyptian and Saudi goat breeds using microsatellite markers. Journal of Applied Biosciences, 72: 5838-5845.

Maletsanake, D., S. J. Nsoso and P. M. Kgwatalala (2013). Genetic variations from 12 microsatellite markers in an indigenous Tswana goat flock in South-Eastern Botswana. Livestock Research for Rural Develop., 25(2): article 21.

Marini, A., A. B. Hifzan, R. M. Tan, S. G. and J. M. Panandam (2014). Assessment of genetic diversity on goat breeds in malaysia using microsatellite markers. Mal. J. Anim. Sci., 17: 19-26.

Marini, A., A. B. Mohd. R. Hifzan, J. A. Johari, S. G. Tan and J. M. Panandam (2013). Genetic variation of four goat breeds in Malaysia using microsatellite polymorphism markers. Mal. J. Anim. Sci., 16: 1-8.

May, B., C. C. Krueger, C. Eng and E. Paul (1995). GENES IN POPULATIONS version 2.0: A Computer Program for Analysis of Genetic Data, Cornell Laboratory for Ecological and Evolutionary Genetics, Cornell University, New York.

Meng-Hua, L., Z. Shu-Hong, B. Ci, W. Hau-Sheng, W. Hong, L. Bang, Y. Mei, F. Bin, C. Shi-Lin, Z. Meng-Jin, L. Shi-Jun, X. Tong-An and L. Kui (2002). Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis. Genet. Sel. Evol., 34: 729-744.

Nyamsamba, D., H. Takahashi, K. Nomura, Y. Zagclsuren, M. Minezawa and T. Amano (2002). Microsatellite analysis of Mongolian goat populations: high genetic variation within and low genetic differentiation between populations. Proceeding of the 7th world congress on genetics applied to livestock production, Montpellier, France.

Ouafi, T. A., J. M. Babilliof, C. Lcroux and P. Martin (2002). Genetic diversity of the two main Moroccan goat breeds: Phylogenetic relationships with four breeds reared in France. Small Rumin. Res., 45: 225-233.

Pandey, A. K., R. Sharma, Y. Singh, B. B. Prakash and S. P. S. Ahlawat (2006). Genetic diversity studies of Kherigarh cattle based on microsatellite markers. Genet., 85: 117-122.

Riyadh, S. A., M. M. Musthafa, M. A. Al-Shaikh, O. M. Badri and M. F. Hussein (2012). Genetic diversity of Ardi goat based on microsatellite analysis. African Journal of Biotechnology, 11: 16539-16545.

Sambrook, J., E. F. Fritsch and T. Maniatis (1989). Molecular Cloning - A Laboratory Manual, Cold Spring Harbor Laboratory Press.

Siwek, Maria and E. F. Knol (2010). Parental reconstruction in rural goat population with microsatellite markers. Italian Journal of Animal Science, Vol. 9:e50.

Takahashi, H., D. Nyamsamba, B. Mandakh, Y. Zagdsuren, T. Amano and K. Nomura (2008). Genetic Structure of Mongolian Goat Populations Using Microsatellite Loci Analysis. Asian-Aust. J. Anim. Sci., 21: 947-953.

Thiruvenkadan, A. K., V. Jayakumar, P. Kathiravan and R. Saravanan (2014). Genetic architecture and bottleneck analyses of Salem Black goat breed based on microsatellite markers. Veterinary World, EISSN: 2231-0916.

Verma, A. K, D. K. Sinha and B. R. Singh (2011). Seroprevalence study on salmonellosis in apparently healthy dogs by enzyme linked immunosobent assay. Indian Journal of Animal Sciences, 81: 3-5.

Visser C., C. A. Hefer, E. van Marle-Köster and A. Kotze (2004). Genetic variation of three commercial and three indigenous goat populations in South Africa. South African Journal of Animal Science, 34.

Visser C., E. van Marle-Köster and H. Friedrich (2011). Parentage verification of South African Angora goats, using microsatellite markers. South African Journal of Animal Science, 41 (no. 3).

Welsh, J. and M. Mecldand (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucl. Acids Res., 18: 7213-7218.

Williams, J. G. K, A. R. Kubclik, K. J. Livak, J. A. Rafalski and S. V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res., 18: 6531-6535.

Wright, S. (1978). Evolution and the Genetics of Population, Variability Within and Among Natural Populations. The University of Chicago Press, Chicago.

Yeh, F. C., T. Boyle, Y. Rongcai, Z. Ye and J. M. Xian (1999). POPGENE, Version 1.31. A Microsoft Window Based Freeware for Population Genetic Analysis. University of Alberta, Edmonton.

Downloads

Published

2016-07-14

Issue

Section

Articles

Most read articles by the same author(s)