CHARACTERIZATION OF PHOTOSYSTEM TRANSMEMBRANE GENES UNDER SUDDEN WATER SUPPLY IN Calotropis procera

Authors

  • HALA F. EISSA F. EISSA 1. Agricultural Genetic Engineering Research Institute (AGERI), Agric. Res. Center (ARC), Egypt 2. College of Biotechnology, Misr University for Science and Technology (MUST), Egypt

Abstract

The wild shrub Calotropis procera grows successfully in dry areas. Photosynthesis is one of the processes severely affected by drought stress. In the present study, four chloroplast genes, i.e., psaA, psaB, psbA and psbB were uncovered and characterized in Calotropis procera from de novo assembled transcriptome contigs of the high throughput sequencing dataset. Theoretical 3D modeling of the deduced amino acid sequences was carried out and accuracy was determined by computing and suboptimal structural alignments between PsaA, PsaB, PsbA and PsbB 3D protein structures of Arabidopsis thaliana and Glycine max and the theoretical 3D models of PsaA, PsaB, PsbA and PsbB proteins in C. procera. Additionally, the functional domains of the studied amino acids sequences were identified. Under sudden supply of a limited amount of water to these desert grown plants, the changes in the expression of psaA, psaB, psbA and psbB genes were determined at three time points (1 hour post-dawn, mid-day and 1 hour pre-dusk). Data indicate that the psaA and psaB genes were down-regulated after watering, while the psbA and psbB were up-regulated especially at time point 1-hour pre-dusk. These responses can be considered as one of the mechanisms of abiotic stress tolerance in this wild plant species.

References

Amunts, A. and N. Nelson (2009). Plant photosystem I design in the light of evolution. Structure Review, Cell Press, 17: 637-650.

Amunts, A., H. Toporik, A. Borovikova and N. Nelson (2010). Structure determination and improved model of plant photosystem I. The Journal of Biological Chemistry, 285: 3478-3486.

Amunts, A., O. Drory and N. Nelson (2007). The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature, 447: 58-63.

Baker, N. R. (1991). A possible role for photosystem II in environmental perturbations of photosynthesis. Physiologia Plantarum, 81: 563-570.

Barber, J. (1987). Photosynthetic reaction centres : a common link. Trends Biochem. Sci., 12: 321-326.

Barber, J. (2002). Photosystem II: A multisubunit membrane protein that oxidises water. Current Opin-ion in Structural Biology, 12: 523-530.

Bot, A. J., F. O. Nachtergaele and A. Young (2000). Land resource po-tential and constraints at regional and country levels. World Soil Re-sources Reports, 90: 1-114.

Boutraa, T. (2010). Effects of water stress on root growth, water use efficien-cy, leaf area and chlorophyll con-tent in the desert shrub Calotropis procera. J. Int. Environmental Ap-plication & Science, 5: 124-132.

Busch, A. and M. Hippler (2011). The structure and function of eukaryot-ic photosystem I. Biochimica et Biophysica Acta, 1807: 864-877.

Chaves, M. M., J. Flexas and C. Pinheiro (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103: 551-560.

Chaves, M. M., J. P. Maroco and J. S. Pereira (2003). Understanding plant responses to drought-from genes to the whole plant. Function-al Plant Biology, 30: 239-264.

Chitnis, P. R. (2001). Photosystem I: Function and physiology. Annual Review of Plant Physiology and Plant Molecular Biology, 52: 593-626.

De Souza, C. R., J. P. Maroco, T. P. dos Santos, M. L. Rodrigues, C. Lopes, J. S. Pereira and M. M. Chaves (2005). Control of stomatal aper-ture and carbon uptake by deficit irrigation in two grapevine culti-vars. Agriculture, Ecosystems and Environment, 106: 261-274.

Degl’Innocenti, E. L. Guidi, B. Stevanovic and F. Navari (2008). CO2 fixation and chlorophyll a flu-orescence in leaves of Ramonda serbica during a dehydration - re-hydration cycle. J. Plant Physiol., 165: 723-733.

Farquhar, G. D. and T. D. Sharkey (1982). Stomatal conductance and photo-synthesis. Annu. Rev. Plant Physiol., 33: 317-345.

Flexas, J. A. Diaz-espejo, J. Galmes, R. Kaldenhoff, H. Medrano and M. Ribas-carbo (2007). Rapid varia-tions of mesophyll conductance in response to changes in CO2 con-centration around leaves. Plant, Cell and Environment, 30: 1284-1298.

Goussias, C., A. Boussac and A. W. Ruth-erford (2002). Photosystem II and photosynthetic oxidation of water: an overview. Philosophical transactions of the Royal Society of Lon-don. Series B, Biological Sciences, 357: 1369-1381.

Gururani, M. A., J. Venkatesh and L. P. Tran (2015). Regulation of photo-synthesis during abiotic regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8: 1304-1320.

Haas, B. J., A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood, J. Bowden, M. B. Couger, D. Eccles, B. Li, M. Lieber, M. D. MacManes, M. Ott, J. Orvis, N. Pochet, F. Strozzi, N. Weeks, R. Westerman, T. William, C. N. Dewey, R. Henschel, R. D. LeDuc, N. Friedman and A. Regev (2013). De novo transcript sequence recon-struction from RNA-seq using the Trinity platform for reference gen-eration and analysis. Nature Proto-cols, 8: 1494-1512.

Hao, L., H. Liang, Z. Wang and X. Liu (1999). Effects of water stress and rewatering on turnover and gene expression of photosystem II reac-tion center polypeptide D1 in Zea mays. Aust. J. Plant Physiol., 26: 375-378.

Havaux, M. and K. N. Niyogi (1999). The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. USA, 96: 8762-8767.

Havaux, M., O. Canaani and S. Malkin (1986). Photosynthetic responses of leaves to water stress, expressed by photoacoustics and related methods. Plant Physiol., 82: 827-833.

Kargul, J. and J. Barber (2008). Photosyn-thetic acclimation: Structural reor-ganization of light harvesting an-tenna - Role of redox-dependent phosphorylation of major and mi-nor chlorophyll a/b binding pro-teins. FEBS Journal, 275: 1056-1068.

Kawakami, K., Y. Umenab, N. Kamiyab and J. Shena (2009). Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. Proceedings of the National Acad-emy of Sciences of the United States of America, 106: 8567-8572.

Kelley, L. A., S. Mezulis, C. M. Yates, M. N. Wass and M. J. E. Sternberg (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protocols, 10: 845-858.

Lawlor, D. W. and G. Cornic (2002). Pho-tosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, 25: 275-294.

Loreto, F., M. Centritto and K. Chartzoulakis (2003). Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. Plant, Cell and Environ-ment, 26: 595-601.

Luciński, R. and G. Jackowski (2006). The structure, functions and degra-dation of pigment-binding proteins of photosystem II. Acta Biochimica Polonica, 53: 693-708.

Mittler, R. E. Merquiol, E. Hallak-Herr, S. Rachmillevitch, A. Kaplan and M. Cohen (2001). Living under a 'dormant' canopy: a molecular ac-climation mechanism of the desert plant Retama raetam. The Plant Journal, 25: 407-416.

Mochida, K. and K. Shinozaki (2010). Genomics and bioinformatics re-sources for crop improvement. Plant and Cell Physiology, 51: 497-523.

Murata, N.; S. Takahashi, Y. Nishiyama and S. I. Allakhverdiev (2007). Photoinhibition of photosystem II under environmental stress. Biochim. Biophys. Acta, 1767: 414-421.

Nelson, N. and A. Ben-Shem (2004). The complex architecture of oxygenic photosynthesis. Nature Reviews, Molecular Cell Biology, 5: 1-12.

Nelson, N. and A. Ben-Shem (2005). The structure of photosystem I and evo-lution of photosynthesis. Bioessays, 27: 914-922.

Nishiyama, Y. and N. Murata (2014). Re-vised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress toler-ance of the photosynthetic machin-ery. Appl. Microbiol. Biotechnol., 98: 8777-8796.

Nixon, P. J. F. Michoux, J. Yu, M. Boehm and J. Komenda (2010). Recent advances in understanding the as-sembly and repair of photosystem II. Annals of Botany, 106: 1-16.

Orwa, C., A. Mutua, R. Kindt, R. Jamnadass and A. Simons (2009). Agroforestree database: a tree ref-erence and selection guide version 4.0, http:// www.worldagroforestry. org/af/treedb/.

Pospísil, P. (2009). Production of reactive oxygen species by photosystem II. Biochim. Biophys. Acta, 1787: 1151-1160.

Ramadan, A., J. S. M. Sabir, S. Y. M. Alakilli, A. M. Shokry, N. O. Gadalla, S. Edris, M. A. Al-Kordy, H. S. Al-Zahrani, F. M. El-Domyati, A. Bahieldin, N. R. Baker, L. Willmitzer and S. Irgang (2014). Metabolomic response of Calotropis procera growing in the desert to changes in water availa-bility. PLOS ONE, 9: 13-19.

Ramadan, A. M. and S. E. Hassanein (2014). Characterization of P5CS gene in Calotropis procera plant from the de novo assembled transcriptome contigs of the high-throughput sequencing dataset. Comptes Rendus Biologies, 337: 683-690.

Rochaix, J. D. (2011). Reprint of: Regula-tion of photosynthetic electron transport. Biochimica et Biophysica Acta, 1807: 878-886.

Sainz, M., P. Diaz, J. Monza and O. Borsani (2010). Heat stress results in loss of chloroplast Cu/Zn super-oxide dismutase and increased damage to Photosystem II in com-bined drought-heat stressed Lotus japonicus. Physiologia Plantarum, 140: 46-56.

Saitou, N. and M. Nei (1987). The Neigh-bor-joining Method: A New Meth-od for Reconstructing Phylogenetic Trees. Mol. Biol. Evol., 4: 406-425.

Schmittgen, T. D. and K. J. Livak (2008). Analyzing real-time PCR data by the comparative CT method. Na-ture Protocols, 3: 1101-1108.

Takahashi, S. and M. R. Badger (2011). Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science, 16: 53-60.

Tezara, W., S. Driscoll and D. W. Lawlor (2008). Partitioning of photosyn-thetic electron flow between CO2 assimilation and O2 reduction in sunflower plants under water defi-cit. Photosynthetica, 46: 127-134.

Tikkanen, M., N. R. Mekala and E. Aro (2014). Photosystem II photoinhibition-repair cycle pro-tects Photosystem I from irreversi-ble damage. Biochimica et Biophysica Acta, 1837: 210-215.

Van Rensen, J. J. and V. B. Curwiel (2000). Multiple functions of pho-tosystem II. Indian J. Biochem. Biophys., 37: 377-382.

Xiong, J. and C. E. Bauer (2002). Com-plex evolution of photosynthesis. Annu. Rev. Plant. Biol., 53: 503-521.

Xu, Z., G. Zhou and H. Shimizu (2010). Plant responses to drought and re-watering. Plant Signaling & Behav-ior, 5: 649-654.

Zhang, L., W. Li, Y. Bi, J. Guo, J. Wen and J. Feng (2002). Water availa-bility affects photosynthetic gene expression in the desert plant Ammopiptanthus mongolicus. Isra-el Journal of Plant Sciences, 50: 243-250.

Zhang, T., H. Gong, X. Wen and C. Lu (2010). Salt stress induces a de-crease in excitation energy transfer from phycobilisomes to photosys-tem II but an increase to photosys-tem I in the cyanobacterium Spirulina platensis. Journal of Plant Physiology, 167: 951-958.

Zhang, Y. and J. Skolnick (2004). Scoring function for automated assessment of protein structure template quali-ty. Proteins, Structure, Function and Genetics, 57: 702-710.

Zhang, Y. and J. Skolnick (2005). TM-align: A protein structure align-ment algorithm based on the TM-score. Nucleic Acids Research, 33: 2302-2309.

Zlatev, Z. (2016). Drought-induced changes in chlorophyll fluores-cence of young wheat plants. Biotechnol. Biotechnol. Equip., 23: 438-441.

Downloads

Published

2016-07-14

Issue

Section

Articles