ASSESSMENT OF GENETIC DIVERSITY OF TOMATO (Lycopersicon esculentum L.) GERMPLASM USING MOLECULAR MARKERS (RAPD AND ISSR)

Authors

  • NEVEEN A. HASSAN National Gene Bank and Genetic Resources (NGBGR), Agricultural Research Center, Ministry of Agriculture and Land Reclamation, Giza, Egypt, P.O. Box, 12619
  • SHIMAA MOSTAFA National Gene Bank and Genetic Resources (NGBGR), Agricultural Research Center, Ministry of Agriculture and Land Reclamation, Giza, Egypt, P.O. Box, 12619
  • A. TWFIK National Gene Bank and Genetic Resources (NGBGR), Agricultural Research Center, Ministry of Agriculture and Land Reclamation, Giza, Egypt, P.O. Box, 12619

Abstract

Two DNA molecular marker systems, RAPD and ISSR were used to assess genetic diversity among nine tomatos (Lycopersicon esculentum L.), one tomatille (Physalis philadelphica) and one cherry tomato (Solanum lycopersicum var. cerasiforme) accessions, collected from different regions in Egypt. Accurate and unambiguous identification of these accessions is essential for germplasm preservation and use. Genomic DNA from the 11 accessions was screened with 18 ISSR primers and nine RAPD primers. A total of 293 and 180 clear fragments were amplified by ISSR and RAPD, respectively. On the other hand, unique positive markers were detected for ‘Tomatillo’ and for ‘Super marmande’, by 4 and 3 RAPD primers, respectively. Moreover, 18 primers of ISSR produced unique positive markers for Tomatille and Castle Rock, respectively. The ISSR technology proved useful in describing genetic diversity among tomato accessions and studies the phylogenetic relationships between cultivars. Cluster analysis using the UPGMA method placed all tomato accessions and cultivars into a single group, while the Tomatille and cherry tomato accessions were placed in a second group.

References

Bernardette, P. C., L .T. S. Gerald, F. G. Grazziotin and S. Echeverrigaray (2006). Genetic diversity among brazilian cultivars and landraces of tomato Lycopersicon esculentum Mill. Revealed by RAPD markers. Genetic Resources and Crop Evolution, 53: 395-400.

Bojinov, B. M. and Zh. P. Danailov (2009). Applicability of ISSRs for genotype identification in a tomato breeding collection. Proc. IVth Balkan Symp. on Vegetables and Potatoes. Eds.: L. Krasteva and N. Panayotov Acta Hort., ISHS, 830.

Bretó, M. P., M. J. Asins and E. A. Carbonell (2003). Identification and characterization of microsatellites in eggplant. Plant Breeding, 122: 256-262.

Claudio, D. G., D. O. Pasqua, B. Angela, C. Franco, L. Concetta and R. Luigi (2004). Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (0l-2) in tomato. Plant Science, 166: 41-48.

Cooke, R. J., G. M. M. Bredemeijer, M. W. Ganal, R. Peters, P. Isaac, S. Rendell, J. Jackson, M. S. Röder, V. Korzun and K. Wendehake (2003). Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica, 132: 331-341.

Cooper, H. D., C. Spillane and T. Hodgkin (2000). Broadening the genetic base of crops: an overview. In: Cooper, H. D., Spillane, C., Hodgkin, T. (Eds.), Broadening the Genetic Base of Crop Production. CABI Publishing, New York, NY, USA, p. 1-23.

Elham, A. A., H. A. A. Atef, N. R. Abd El-Hamid and A. A. Rizkalla. (2010). Phylogenetic diversity and relationships of some tomato varieties by electrophoretic protein and RAPD analysis. Journal of American Science, 11: 434-441.

El-Rabey, H. (2008). Molecular and biochemical studies on Egyptian Hordium murinum L. complex as reveald by RAPD-PCR and seed storage protein electrophoresis. Taeckholmia, 28: 145-156.

Ezekiel, C. N., C. C. Nwangburuka, O. A. Ajibade and A. C. Odebode (2011). Genetic diversity in 14 tomato (Lycopersicon esculentum Mill.) varieties in Nigerian markets by RAPD-PCR technique African Journal of Biotechnology, 10: 4961-4967.

Gupta, P. K. and S. Rustgi (20040. Molecular markers from the transcribed/expressed region of the genome in higher plants. Functional

& Integrative Genomics, 4: 139-162.

Hawtin, G., M. Iwanaga and T. Hodgkin (1997). Genetic resources in breeding for adaptation. In: Tigerstedt, P. M. A. (Ed.), Adaptation in Plant Breeding. Kluwer Academic Publishers, Dordrecht, the Netherlands, p. 277-288.

He, C., V. Poysa and K. Yu (2003). Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor. Appl. Genet., 106: 363-373.

Jin, F. M., J. Xue, S. Y. Xia and Z. Q. Liu (2004). Application of SSR marker technique to the tomato genetic breeding. 2004. Tianjin Agric. Sciences in Chinese, 4: 13-17.

Juan, M., X. Yang, H. Lan and L. Fu (2010). Analysis of genetic diversity in cultivated and wild tomato varieties in Chinese market by RAPD and SSR. Agricultural Sciences in China, 9: 1430-1437.

Kochieva, E. Z., N. N. Ryzhova, I. A. Khrapalova and V. A. Pukhalskyi (2002). Genetic diversity and phylogenetic relationships in the genus Lycopersicon (Tourn.) Mill. as revealed by inter-simple sequence repeat (ISSR) analysis. Russ. J. Genet., 38: 958-966.

Lanham, P. G. and R. M. Brennan (1998). Characterization of the genetic resource of red currant (Ribes rubrum: Subg. Ribesia) using anchored microsatellite markers. Theor. Appl. Genet., 96: 917-921.

Levi, A. and L. J. Rowland (1997). Identifying blueberry cultivars and evaluating their genetic relationships using randomly amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) anchored primers. J. Amer. Soc. Hort. Sci., 122: 74-78.

Liu, G., L. Liu, Y. Gong, Y. Wang, F. Yu, H. Shen and W. Gui (2007). Seed genetic purity testing of F1 hybrid cabbage (Brassica oleracea var. capitata) with molecular marker analysis. Seed Sci. Technol., 35: 476-485.

Li-Wang, L., Y. Wang, Y. Gong, T. Zhao, G. Liu, X. Li and F. Yu (2007). Assessment of genetic purity of tomato (Lycopersicon esculentum L.) hybrid using molecular markers. Scientia Horticulturae, 115: 7-12.

Mansour, A., H. M. Ismail, M. F. Ramadan and G. Gyulai (2009). Variations in tomato (Lycopersicon esculentum) cultivars grown under heat stress. J. Verbr. Lebensm., 4: 118-127.

Meng, Fan-juan, Xiang-yang Xu, Feng-lan Huang and Li Jing-fu (2010). Analysis of genetic diversity in cultivated and wild tomato varieties in Chinese market by RAPD and SSR. Agricultural Sciences in China, 9: 1430-1437.

Messeguert, R., M. Ganal, M. C. de Vicente, N. D. Young, H. Bolkan, S. D. Tanksley (1991). High resolution RFLP map around the root knot nematode resistance gene (Mi) in tomato. Theor. Appl. Genet., 82: 529-536.

Munazza, S., A. M. Salman, A. R. Malik and S. R. Pearce (2009). Electrophoretic characterization and the relationship between some Brassica species. Electronic Journal of Biology, 5: 1-4.

Nagaoka, T. and Y. Ogihara (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markersin comparison to RFLP and RAPD markers. Theor. Appl. Genet., 94: 597-602.

Omrani, S. A., M. Shahriari, M. A. Falahati, S. A. Mohammadi, A. Nankali, M. Mardi and B. Ghareyazie (2007). Microsatellite markers based assessment of genetic diversity in Iranian olive (Olea europaea L.) collections. Scientia Horticulturae, 112: 439-447.

Powell, W., G. C. Machray and J. Provan (1996). Polymorphism revealed by simple sequence repeats. Trends Plant Science, 1: 215-222.

Rajput, S., G. K. J. Wable, K. M. Sharma, P. D. Kubde and S. A. Mula (2006). Reproducibility testing of RAPD and SSR markers in tomato. African Journal of Biotechnology, 5: 108-112.

Rom, M., M. Bar, A. Rom, M. Pilowsky and D. Gidoni (1995). Purity con-trol of F1 hybrid tomato cultivars by RAPD markers. Plant Breed., 114: 188-190.

Saavedra, G., W. Spoor and L. Harrier (2001). Molecular markers and ge-netic base broadening in Lycopersicon spp. Proc. Int. Symp. on Molecular Markers. Acta Hort., ISHS, 546.

Singh, N., M. Singh, S. Kumar, R. Kumar, V. Singh, H. C. Prasanna and M. Rai (2007). RAPD markers for hy-brid seed purity testing in tomato (Solanum lycopersicum L.). Curr. Sci., 93: 462-463.

Tanksley, S. D. and S. R. McCouch (1997). Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 277: 1063-1066.

Terzopoulos, P. J. and P. J. Bebeli (2008). DNA and morphological diversity of selected Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulturae, 116: 354-361.

Tikunov, Yu. M., L. I. Khrustaleva and G. I. Karlov (2003). Application of ISSR markers in the genus Lycopersicon. Euphytica, 131: 71-80.

Wang, J. B. (2004). ISSR markers and their applications in plant genetics. Genes Genet. Syst., 79: 293-299.

Williams, C. E. and D. A. S. Clair (1993). Phenotypic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome, 36: 619-630.

Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. T. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.

Van Hintum, Th. J. L. (1995). Hierarchical approaches to the analysis of genetic diversity in crop plants. In: Hodgkin, T., Brown, A. H. D., van Hintum, Th. J. L., Morales, E. A. V. (Eds.), Core Collections of Plant Genetic Resources. John Wiley and Sons, Chichester, UK, p. 23-34.

Zeven, A. C. (1998). Landraces: a review of definitions and classifications. Euphytica, 104: 127-139.

Zeven, A. C. (2002). Traditional maintenance breeding of landraces: 2. Practical and theoretical considerations on maintenance of variation of landraces by farmers and gardeners. Euphytica, 123: 147-158.

Downloads

Published

2016-01-12

Issue

Section

Articles