Monosodium glutamate (MSG) is one of the most widely used flavor enhancers throughout the world. The objective of this study was to evaluate the genotoxic effect of MSG on V. faba seedlings. Moreover, the effects of adding some natural materials to MSG; e.g. chitosan, four different spices (black pepper, cumin, chili pepper and ginger) and three different forms of black nightshade plant; BNS (leaves, immature and mature fruits) were tested. Seeds of V. faba were treated with single concentration of MSG (10 g/L); alone (as a positive control) or combined with 1% aqueous solution of each of these natural additives. Results indicated that the treatment of MSG reduced germination value than negative control at 72 h. On the other hand, the use of black pepper and cumin at 48 h, in addition, chitosan at 72 h significantly increased seed germination compared to negative and positive control. The highest root length value (3.11 cm) was observed for cumin treatment. Exposure to MSG and combined treatments showed an inhibitory effect on cell division and caused a general decline in mitotic index. Additionally, all treatments caused significantly increase in the percentage of abnormal cells, except cumin which did not differ significantly from the negative control. By analyzing the RAPD-PCR with twelve arbitrary primers, all treatments caused slight reductions in genomic template stability (GTS) values compared to the negative control. The highest value of GTS (87.50%) was recorded for positive control, while treatments of black pepper and cumin exhibited the lowest value (78.12% for each). These results indicated that all the tested materials may interact with MSG causing genotoxic effects. In general, black pepper and cumin had the lowest genotoxic effects.

Full Text:



Adeyemo, O. A. and A. E. Farinmade (2013). Genotoxic and cytotoxic effects of food flavor enhancer, monosodium glutamate (MSG) using Allium cepa assay. Afri. J. Biotechnol., 12: 1459-1466.

Allahghadri, T., I. Rasooli, P. Owlia, M. J. Nadooshan, T. Ghazanfari, M. Taghizadeh and S. D. A. Astaneh (2010). Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J. Food Sci., 75: 54- 61.

Al-Qirim, T., M. Z. Syed, S. Moyad, S. Ghassan and B. Naheed (2008). Effect of Solanum nigrum on immobilization stress induced antioxidant defense changes in rat. Res. J. Biol. Sci., 3: 1426-1429.

Arulmozhi, V., M. Krishnaveni, K. Karthishwaran, G. Dhamodharan and S. Mirunalini (2010). Antioxidant and antihyperlipidemic effect of Solanum nigrum fruit extract on the experimental model against chronic ethanol toxicity. Pharmacogn Mag., 6: 42-50.

Aruna, K. and V. M. Sivaramakrishnan (1992). Anticarcinogenic effects of some Indian plant products. Food and Chem. Toxicol., 30:332-333.

Ataseven, N., D .Yüzbaşıoğlu, A. Ç. Keskin and F. Ünal (2016). Genotoxicity of monosodium glutamate. Food and Chem. Toxicol., 91: 8-18.

Atienzar, F. A. and A. N. Jha (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mutat. Res., 613: 76- 102.

Atienzar, F. A., P. Venier, A. N. Jha and M. H. Depledge (2002). Evaluation of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations. Mutat. Res., 521: 151-163.

Baeshin, N. A. and S. H. Qari (2003). Combined genotoxic and cytotoxic effects of cadmium chloride and carbofuran in root meristems of Vicia faba. Saudia J. Biol. Sci., 10: 107-119.

Bellisle, F. (2008). Experimental studies of food choices and palatability responses in European subjects exposed to the umami taste. Asia Pac. J. Clin. Nutr., 17: 376-379.

Bonassi, S., R. El-Zein, C. Bolognesi and M. Fenech (2011). Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies. Mutagenesis, 26: 93-100.

Cenkci, S., M. Yildiz, I. Cigerci, M. Konuk and A. Bozdag (2009). Toxic chemical induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris) seedlings. Chemosphere, 76: 900-906.

Darlington, C. D. and L. E. La cour (1976). The Handling of Chromosomes, 6th ed. Allen and Unwin, London.

Demirhan, B. E., B. Demirhan, C. Sönmez, H. Torul, U. Tamer and G. Yentür (2015). Monosodium glutamate in chicken and beef stock cubes using high-performance liquid chromatography. Food Addit. Contam. Part B Surveill, 8: 63-66.

El-Ghorab, A. H., M. Nauman, F. M. Anjum, S. Hussain and M. Nadeem (2010). A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem., 58: 8231-8237.

Fernstrom, J. D. and S. Garattini (2000). International symposium on glutamate. J. Nutr., 130 (Suppl 4): 891S-1079S.

Filer, L. J. and L. D. Stegink (1994). Report of the proceedings of the glutamate workshop. Crit. Rev. Food Sci. Nutr., 34: 159-174.

Haghighi, M., P. Fang and M. Pessarakli (2015). Effects of ammonium nitrate and monosodium glutamate in waste water on the growth, antioxidant activity, and nitrogen assimilation of Lettuce (Lactuca sativa L.). J. Plant Nutr., 38: 2217-2229.

Jinap, S. and P. Hajeb (2010). Glutamate. Its applications in food and contribution to health. Appetite, 55: 1- 10.

Kanaya, N., B. S. Gill, I. S. Grover, A. Murin, R. Osiecka, S. S. Sandhu and H. C. Andersson (1994). Vicia faba chromosomal aberration assay. Mutat. Res., 310: 231-247.

Kim, Y. H., H. S. Bom, K. Y. Kim, H. K. Kim and J. Y. Kim (1999). Inhibitory effect of chitosan on the milk transfer of radiostrontium from contaminated mice to their sucklers. Kor. J. Chitin Chitosan, 4: 15-18.

Löliger, J. (2000). Function and importance of glutamate for savory foods. J. Nutr., 130: 915S-920S.

Mariyamma, T., K. S. Sujatha and G. Sisilamma (2009). Protective effect of Piper longum L. on monosodium glutamate induced oxidative stress in rats. Indian J. Exp. Biol., 47: 186-192.

Mateos, R. M., A. Jiménez, P. Román, F. Romojaro, S. Bacarizo, M. Leterrier, M. Gómez, F. Sevilla, L. A. Río, F. J. Corpas and J. M. Palma (2013). Antioxidant systems from pepper (Capsicum annuum L.): involvement in the response to temperature changes in ripe fruits. Int. J. Mol. Sci., 14: 9556-9580.

Nakanishia, Y., K. Tsuneyamaa, M. Fujimotoc, T. L. Salungaa, K. Nomotoa, J. L. Ana, Y. Takanoa, S. Iizukae, M. Nagatae, W. Suzukie, T. Shimadae, M. Aburadae, M. Nakanof, C. Selmig and M. E. Gershwinh (2008). Monosodium glutamate (MSG): A villain and promoter of liver inflammation and dysplasia. J. of Autoimmunity, 30: 42-50.

Ozden, S., D. Yüzbasloglu, F. Ünal and M. Ozel (2014). The determination of possible genetic damage to women undergoing in vitro fertilization due to infertility caused by the male factor. Food Chem. Toxicol., 74: 294-300.

Pandey R. M. and S. Upadhyay (2007).Impact of food additives on mitotic chromosomes of Vicia faba L. Caryologia, 60: 309-314. Prakash, E. and D. K. Gupta (2014). Cytotoxic activity of ethanolic extract of Cuminum cyminum Linn against seven human cancer cell line. Universal J. Agri. Res., 2: 27-30.

Qari, S. H. M. (2010). DNA-RAPD fingerprinting and cytogenetic screening of genotoxic and antigenotoxic effects of aqueous extracts of Costus speciosus (Koen.). JKAU: Sci., 22: 133-152.

Raif, S. G., A. Beiser, C. Ren, R. Patterson, P. A. Greenberger, L. C. Grammer, A. M. Ditto, K. E. Harris, M. A. Shaughnessy, P. R. Yarnold, J. Corren and A. Saxon (2000). Review of alleged reaction to monosodium glutamate and outcome of a multicenter double-blind placebo-controlled study. J. Nutr., 130: 1058S-1062S.

Rocco, L., G. Frenzilli, G. Zito, A. Archimandritis, C. Peluso and V. Stingo (2012). Genotoxic effects in fish induced by pharmacological agents present in the sewage of some Italian water- treatment plants. Inc. Environ. Toxicol., 27: 18-25.

Saghai-Maroof, M. A., K. M. Soliman, R. A. Jorgensen and R. W. Allard (1984). Ribosomal DNA spacerlength polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA, 81: 8014-8018.

Satnam, S., Pd. Rekha, A. B. Arun and Y. Chiu-Chung (2009). Impacts of monosodium glutamate industrial wastewater on plant growth and soil characteristics. Eco-logical Engineering, 35: 1559-1563.

Schiffman, S. S. (1997). Taste and smell losses in normal aging and disease. J. Am. Med. Assoc., 278: 1357- 1362.

Shahidi, F., J. K. V. Arachchi and Y. J. Jeon (1999). Food applications of chitin and chitosans. Trends Food Sci. Technol., 10: 37-51.

Shobana, S. and K. A. Naidu (2000). Antioxidant activity of selected Indian spices. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 62: 107-110.

Shon, Y. H., Y. M. Ha, T. R. Jeong, C. H. Kim and K. S. Nam (2001). Modifying action of chitosan oligosaccharide on 2-amino- 3,8-imethylimidazo [4,5-f] quinoxaline (MeIQx)-induced mutagenesis. J. Biochem. Mol. Biol., 34: 90-94.

Smaka-Kincl, V., P. Stegnar, M. Lovka and J. M. Toman (1996). The evaluation of waste, surface and ground water quality using the Allium test procedure. Mutat. Res., 368: 171-179.

Stoilovaa, I., A. Krastanova, A. Stoyanovab, P. Denevc and S. Gargovaa (2007). Antioxidant activity of a ginger extract (Zingiber officinale). Food Chem., 102: 764- 770.

Sudhakar, R., N. Gowda and G. Venu (2001). Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa. Cytologia, 66: 235-239.

Suhaja, M., J. Rácováa, M. Polovkab and V. Brezová (2006). Effect of γ- irradiation on antioxidant activity of black pepper (Piper nigrum L.). Food Chem., 97: 696-704.

Sun, T., Z. Xu, C. T. Wu, M. Janes, W. Prinyawiwatkul and H. K. No (2007). Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). J. Food Sci., 72: S98-S102.

Thippeswamy, N. B. and K. A. Naidu (2005). Antioxidant potency of cumin varieties-cumin, black cumin and bitter cumin- on antioxidant systems. Eur. Food Res. Technol., 220: 472-476.

Ubani, L. U. (2011). Preventive therapy in complimentary medicine. Publs: Xlibris (July 5, 2011), 770 pages. Yoon, H. J., H. S. Park, H. S. Bom, Y. B. Roh, J. S. Kim and Y. H. Kim (2005). Chitosan oligosaccharide inhibits 203HgCl2-induced genotoxicity in mice: micronuclei occurrence and chromosomal aberration. Arch. Pharm. Res., 28: 1079-1085.


  • There are currently no refbacks.

Copyright (c) 2018 Egyptian Journal of Genetics And Cytology

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.