Genetic transformation is considered as one of the most favorable options for improvement of crop traits. In this study the regeneration frequency and transformation system were established on the Egyptian sweet potato (Ipomoea batatas (L.) Lam.) cv. Abees and Mabruka. The effect of different hormone combinations and type of explant on shoot regeneration was evaluated. The regeneration percentages from Abees and Mabruka cv. 26.3 and 13.3%, respectively were obtained on Murashige and Skoog MS basal salt mixture + 1.0 mg/l BA + 30.0 g/l sucrose + 2.2 g/l Phytagel with Abees cv. and the same media was used for cv. Mabruka with only cytokinin type different as 5.0 Kin and shoots were rooted on MS medium + 30 g/l sucrose and 2.2 g/l Phytagel. The Agrobacterium-mediated and microprojectile bombardement transformation system were successfully introducing the reporter gus and selectable bar marker genes in the sweet potato explants under pressure of 900 and 1100 psi and microcarrier travel distance (6 and 9 cm). Incorporation and expression of the gus and bar genes into sweet potato plants were confirmed using polymerase chain reaction (PCR) and GUS histochemical assay. Several factors were found to be important for regeneration and transformation in sweet potato. The most effective factors were plant genotype and the type of explants. Co-cultivation time and optical density of the Agrobacterium suspension were also critical for sweet potato transformation. This work is an attempt to open the door for further genetic improvement of sweet potato using important agronomic traits.

Full Text:



De Bondt, A., K. Eggermont, P. Druart, M. De Vil, I. Goderis, J. Vanderleyden and W. F. Broekaert (1994). Agrobacterium-mediated transformation of apple (Malus x domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Reports, 13: 587-593.

El-Far, M. M., K. El Mangoury and H. E. M. Elazab (2009). Novel plant regeneration for Egyptian sweetpotato (Ipomoea batatas (L.) Lam.) Abees cultivar via indirect organogenesis stimulated by initiation medium andcytokinin effects. Australian Joural of Basic and Applied Sciences, 3: 543-551.

FAOSTAT, F. (2015). Agriculture Organization of the United Nations, 2011. FAO, Retrieved am from http://faostat3. fao. org/ faostat-gateway/go/to/ download/ Q/QC/S. Acceso 20.

Gama, M. I., R. P. Leite Jr, A. R. Cordeiro and D. J. Cantliffe (1996). Transgenic sweet potato plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell, Tissue and Organ Culture, 46: 237-244.

Gong, Y., F. Gao, K. Tang and P. Debergh (2005). In vitro high frequency direct root and shoot regeneration in sweet potato using the ethylene inhibitor silver nitrate. South African Journal of Botany, 71: 110-113.

González, R. G., D. S. Sánchez, J. M. Campos, E. P. Vázquez, Z. Z. Guerra, A. L. Quesada, R. M. Valdivia and M. G. González (1999). Plant regeneration from leaf and stem explants from two sweet potato (Ipomoea batatas L. Lam.) cultivars. Biotecnologia Aplicada, 16: 11-14.

González, R. G., D. S. Sánchez, Z. Z. Guerra, J. M. Campos, A. L. Quesada, R. M. Valdivia, A. D. Arencibia, K. Q. Bravo and P. D. Caligari (2008). Efficient regeneration and Agrobacterium tumefaciens mediated transformation of recalcitrant sweet potato (Ipomoea batatas L.) cultivars. Asia Pacific Journal of Molecular Biology and Biotechnology, 16: 25-33.

Gosukonda, R. M., C. Prakash and A. P. Dessai (1995). Shoot regeneration in vitro from diverse genotypes of sweetpotato and multiple shoot production per explant. HortScience, 30: 1074-1077.

Hansen, G., R. D. Shillito and M. D. Chilton (1997). T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. Proceedings of the National Academy of Sciences, 94: 11726- 11730.

Jefferson, R. A ,.T. A. Kavanagh and M. W. Bevan (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6: 3901-3907.

Jiménez, V. M. (2005). Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regulation, 47: 91-110.

Jin, H. K., K. M. Kim and B. W. Yun (2015). Establishment of a one-step plant regeneration system in sweet potato (Ipomoea batatas [L.] Lam.). Global Journal of Biology, Agriculture and Health Sciences, 4: 48-55.

Kreuze, J. F., I. S. Klein, M. U. Lazaro, W. J. C. Chuquiyuri, G. L. Morgan, P. G. C. Mejia, M. Ghislain and J. Valkonen (2008). RNA silencingmediated resistance to a crinivirus (Closteroviridae) in cultivated following co‐infection with a potyvirus. Molecular Plant Pathology, 9: 589- 598.

Lawton, R., S. Winfield, H. Daniell, A. S. Bhagsari and S. K. Dhir (2000). Expression of green-fluorescent protein gene in sweet potato tissues. Plant Molecular Biology Reporter, 18: 139-139.

Mohamed, M., M. Mohamed and A. Ahmed (2007). Differential axillary-bud proliferation responses of two sweet potato cultivars to benzyl adenine and thidiazuron. Assiut University Bulletin Environment Research, 10: 21-30.

Mohanty, P., M. Rout and R. Behera (2016). Character association and path analysis in sweet potato (Ipomoeabatatas (L.) Lam.) genotypes. Advances in Life Sciences, 5: 441-448.

Murashige, T. and F. Skoog (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15: 473-497.

Newell, C., J. Lowe, A. Merryweather, L. Rooke and W. Hamilton (1995). Transformation of sweet potato (Ipomoea batatas (L.) Lam.) with Agrobacterium tumefaciens and regeneration of plants expressing cowpea trypsin inhibitor and snowdrop lectin. Plant Science, 107: 215-227.

Okada, Y. and A. Saito (2008). Evaluation of resistance to complex infection of SPFMVs in transgenic sweet potato. Breeding Science, 58: 243- 250.

Otani, M., M. Mii, T. Handa, H. Kamada and T. Shimada (1993). Transformation of sweet potato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium rhizogenes. Plant Science, 94: 151-159.

Otani, M., T. Shimada, T. Kimura and A. Saito (1998). Transgenic plant production from embryogenic callus of sweet potato (Ipomoea batatas (L.) Lam.) using Agrobacterium tumefaciens. Plant Biotechnology, 15: 11-16.

Otani, M., Y. Wakita and T. Shimada (2003). Production of herbicideresistant seetpotato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium tumefaciens-mediated transformation. Breeding Science, 53: 145-148.

Parle, M., M. M. Kadian and K. K. Sharma (2015). A review on psychosis and anti-psychotic plants. Asian Journal of Pharmaceutical and Clinical Research, 8: 24-28.

Prakash, C., U. Varadarajan and A. Kumar (1991). Foreign gene transfer to sweet potato (Ipomoea batatas). HortScience, 26: 492-492.

Qing, K. Y. and P. T. Guo (1999). Effects of salt stress on the ultrastructure of chloroplast and the activities of some protective enzymes in leaves of sweet potato. Acta Photophysiologica Sinica, 25: 229- 233.

Roca, W. M., N. Espinoza, M. Roca and J. Bryan (1978). A tissue culture method for the rapid propagation of potatoes. American Potato Journal, 55: 691-701.

Sefasi, A., G. Ssemakula, M. Ghislain, K. Prentice, A. Kiggundu, R. Mwanga and S. Mukasa (2014). Transient expression of β-glucuronidase in recalcitrant Ugandan sweetpotato and putative transformation with two cry genes. African Crop Science Journal, 22: 215-228.

Sefasi, A., J. Kreuze, M. Ghislain, S. Manrique, A. Kiggundu, G. Ssemakula and S. Mukasa (2012). Induction of somatic embryogenesis in recalcitrant sweetpotato (Ipomoea batatas L.) cultivars. African Journal of Biotechnology, 11: 16055-16064.

Sihachakr, D. and G. Ducreux (1987). Plant regeneration from protoplast culture of sweet potato (Ipomoea batatas Lam.). Plant Cell Reports, 6: 326-328.

Sivparsad, B. and A. Gubba (2012). Development of an efficient plant regeneration protocol for sweet potato (Ipomoea batatas L.) cv. Blesbok. African Journal of Biotechnology, 11: 14982-14987.

Sriskandarajah, S., S. Frello and M. Serek (2001). Induction of adventitious shoots in vitro in Campanula carpatica. Plant Cell, Tissue and Organ Culture, 67: 295-298.

Triqui, Z. E. A., A. Guédira, A. Chlyah, H. Chlyah, V. Souvannavong, R. Haïcour and D. Sihachakr (2008). Effect of genotype, gelling agent, and auxin on the induction of somatic embryogenesis in sweet potato (Ipomoea batatas Lam.). Comptes Rendus Biologies, 331: 198-205.

Tumwegamire, S., R. Kapinga, P. R. Rubaihayo, D. R. LaBonte, W. J. Grüneberg, G. Burgos, T. Zum Felde, R. Carpio, E. Pawelzik and R. O. Mwanga (2011). Evaluation of dry matter, protein, starch, sucrose, β-carotene, iron, zinc, calcium, and magnesium in East African sweetpotato [Ipomoea batatas (L.) Lam] germplasm. HortScience, 46: 348-357.

Xing, Y., Q. Ji, Q. Yang, Y. Luo, Q. Li and X. Wang (2008). Studies on Agrobacterium-mediated genetic transformation of embryogenic suspension cultures of sweet potato. African Journal of Biotechnology, 7: 534-540.

Xing, Y., Q. Yang, Q. Ji, Y. Luo, Y. Zhang, K. Gu and D. Wang (2007). Optimization of Agrobacteriummediated transformation parameters for sweet potato embryogenic callus using β- glucuronidase (GUS) as a reporter. African Journal of Biotechnology, 6: 2578-2584.

Yi, G., Y. M. Shin, G. Choe, B. Shin, Y. S. Kim and K. M. Kim (2007). Production of herbicide-resistant sweet potato plants transformed with the bar gene. Biotechnology Letters, 29: 669-675.

Zang, N., H. Zhai, S. Gao, W .Chen, S. He and Q. Liu (2009). Efficient production of transgenic plants using the bar gene for herbicide resistance in sweetpotato. Scientia Horticulturae, 122: 649-653.


  • There are currently no refbacks.

Copyright (c) 2018 Egyptian Journal of Genetics And Cytology

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.