PHYSIOLOGICAL AND GENETICAL VARIABILITY AMONG SOME PLANTS UNDER DIFFERENT SALINITY CONDITIONS IN KUWAIT

Authors

  • FAYKA M. EL GAALY Botany Department, Faculty of Science (For Girls) Al-Azhar University, Cairo, Egypt

Abstract

The present study is devoted to physical, biochemical and genetical investigations of three halophytic plants Salsola baryosma (Romy and Schult), Tragnum nudatum (Delile), and Nitraria retusa (Forssk.) from Khiran area to their three different environment (site 1) in front of Al Wataniyah Chalet Resort, (site 2) Behind Al Wataniyah Chalet Resort and (site 3) 5 Km. away from Al Wataniyah Chalet Resort) in Kuwait state. Abiotic and biotic factors of the study area are defined through soils and plant studies. Aerial parts of three plants were collected from three different sites of Kuwiat state. The elemental composition of leaves and stems reveals the macronutrients, micronutrients and heavy metals contents and the plant is not polluted, reflecting the safe environment. With regard to the biochemical components of the aerial parts, the moisture content varies within narrow limits is higher in leaves of plants Nitraria retusa, Tragnum nudatum and Salsola baryosma which grown in sites (3, 2 and 1), also in the stems of plants which grown in sites (3, 1 and 2), respectively. Also, ash content is relatively higher in leaves relative to stems. Moreover, total carbohydrates and total protein are quite higher in leaves relative to stems Nitraria retusa, Tragnum nudatum and Salsola baryosma in plants which grown in sites (3, 2 and 1), respectively. Total lipids are almost the same for stems and leaves and crude fiber is much higher in total amino acids in both leaves and stems, the acidic ones (aspartic and glutamic) are the most predominant while the least abundant are the cyclic and basic (tyrosine and histidine). Physiological and biochemical researches have shown that salt tolerance depend on a range of adaptations embracing many aspects of plant physiology one of these includes the compartmentation of ions. The (rbcL) species identification sequences reveled that Salsola is a genus of the subfamily Salsoloideae in the family (Amaranthaceae) or family (Chenopodiaceae) .That might be due to the in sufficient rbcL similar sequences of two plant species (Salsola baryosma, Tragnum nudatum) in the GenBank database, or the rbcL marker is the most suitable to be applied for the DNA barcoding for such families. However, the results revealed that, Nitraria is a genus of the family Nitrariaceae and Nitraria retusa is a spp.

References

Angiosperm Phylogeny Group (2009). "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III" (PDF). Botanical Journal of the Linnean Society. 161: 105–121. Doi:10.1111/j.1095- 8339.2009. 00996.x. Retrieved 2013-07-06.

AOAC (2006). Official methods of analysis. Association of Official Agricultural Chemists, 18th Ed., Washington, DC., USA.

Black (1986). Methods of soil analysis: part I. Physical and mineralogical analysis and part II. Chemical and microbiological analysis, Agronomy Series 9, 2nd Ed. Amer. Soc. Agron. Inc. and Soil Sci. Soc. Amer., Mad., Wisc., USA.

Bonner, J. and A. W. Galston (1952). Principles of plant physiology. San Fransisco, USA. Campllans, A., R. Messegueer, A.

Gody and M. Pages (1999). Plant responses to drought, from ABA signal transduction events to the action of the induced proteins. Plant Physiology and Biochemistry, 37: 327-340.

Chandler, P. M. and M. Robertson (2004). Gene expression regulated by Abscisic acid and its relation to stress tolerance. Annual review of Plant Physiology and Plant Molecular Biology, 45: 113-141.

Chaplin, M. F., J. F. Kennedy (1994). Carbohydrate Analysis: A Practical Approach. ILR Press, Science, pp.324.

Chase, M. W., N. Salamin, M. Wilkinson and J. M. Dunwell (2005). Land plants and DNA barcodes: shortterm and long-term goals. Philos. Trans. R. Soc. Lond. B Biol. Sci., 360: 1889-1895.

Christenhusz, M. J. M. and J. W. Byng (2016). "The number of known plants species in the world and its annual increase". Phytotaxa. Magnolia Press, 261: 201-217.

Cottenie, M., L. Verloo, Kieken G. Velgh and R. Camcrlynck (1982). Chemical analysis of plant and soil Lab. Anal. Agrochem., State Univ., Ghent , Belgium.

Gee, G. W. and J. W. Bauder (1986). Particle size analysis and electrical conductivity. In: Klute, A. (Ed.), Methods of soil analysis, part I, 2nd Ed. Agronomy Series 9. Amer. Soc. Agron. Inc. and Soil Sci. Soc. Amer., Mad., Wisc., USA.

Gigon, A., A.R. Matosy, D. Laffray, Y. Zuily-Fodil and A. T. Pham-Thi (2004). Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Annals of Botany, 94: 345-351.

Hanson, A. D. and W. D. Hitz (1982). Metabolic responses of mesophytes to plant water deficits. Ann. Rev. Plant Physiol., 33: 163-203.

Jaradat, A. A. (1999). Plant genetic resources for salt tolerance in the Mediterranean Region. Irrigation management and saline conditions. Proceedings of Regional Symposium, Just, Irbid, Jordan, June, 150- 220.

Kenklies, J., R. Ziehn, K. Fritsche, A. Pich and J. R. Andreesen (2006). Proline biosynthesis from Lornithine in Clostridium sticklandii: purification of Δ1- pyrroline-5-carboxylate reductase, and sequence and expression of the encoding gene, pro C. Microbiology, 145: 819-826.

Kramer, P. J. (1983). Water relations of plants. Academic Press Inc., New York, USA, 496. Kress, W. J. and D. L. Erickson (2007). A two-locus global DNA for land plants the coding rbcL gene complements the non-coding trnh-psbA spacer region. PLoS ONE, 2: e508.

Kress, W. J., K. J. Wurdack, E. A. Zimmer, L. A. Weigt and D. H. Janzen (2005). Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA, 102: 8369- 8374.

Lahaye, R., M. Van Der Bank, D. Bogarin, J. Warner; F. Pupulin, G. Gigot, O. Maurin, S. Duthoit, T. G. Barraclough and V. Savolainen (2008). DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences, USA, 105: 2923-2928.

Lisar, S. Y. S., R. Motafakkerazad, M. M. Hossain and I. M. M. Rahman (2012). Water stress in plants: causes, effects and responses. In: Water stress, Rahman, Hasegawa, H., Agricultural and Biological Sciences.

Matos, A. R., A. d’Arcy-lameta, M. Franca, S. Peters, I. Edelman, J. Kader, Y. Zuily-Fodil and A. T. Pham-Thi (2001). A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. Plant Science, 491: 188-192

Matysik, J. A., B. Bhalu and P. Mohanty (2002). Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Current Science, 82: 525- 532.

Meditsiiniline Keemia/Chemistry (2012). Determination of sodium and potassium by flame photometry. http://tera.chem.ut.ee /~koit /arstpr /nak_en.pdf

Mold, R. J. (2012). Ecology of Halophytes. Elsevier. p. 579. ISBN 978- 0-323-144377.

Monteiro de Paula, F., A. T. Pham Thi, F. Y. Zuily, R. Ferrari-lliou, J. Vieira da Silva and P. Mazliak (1993). Effect of water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vignaunguiculata. Plant Physiology and Biochemistry, 31: 707-715.

Nanjo, T., M. Kobayashi, Y. Yoshiba, K. Wada, H. Tsukaya, Y. Kakaubari and S. K. Yamaguchi (2009). Biological functions of proline in morphogenesis and osmotolerance revealed in antisensetransgenic Arabidopsis thaliana. Plant J., 18: 185- 193.

Navari-izzo F., M. F. Quartaccr and R. Izzo (1990).Water-stress induced changes in protein and free-amino acids in field-grown maize and sunflower. Plant Physiology and Biochemistry, 28: 531-537.

Nour El-Din, N. M. and F. A. Ahmed (2004). Effect of seasonal variation on secondary metabolites and nutritive value of Crotalaria aegyptiaca Benth. Egyptian Journal of Desert Research, 54: 121- 139.

Osuna, D., B. Usadel, R. Morcuende, Y. Gibon, O. Bläsing, M. Höhne, M. Günter, B. Kamlage, R. Trethewey, W. R. Scheible and M. Stitt (2007). Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbondeprived Arabidopsis seedlings. Plant J., 49: 463-491.

Ragupathy, S., S. G. Newmaster, V. Balasubramaniam and M. Murugesan (2009). DNA barcoding discriminates a new cryptic grass species revealed in an Ethnobotany study by the hill tribes of the Western Ghats in southern India. Mol. Eco. Res., 9: 164-171.

Sacala, E., A. Demezuk, E. Grzys and Z. Spiak (2008). Effect of salt and water stresses on growth, nitrogen and phosphorous metabolism in Cucumisastivus L. Seeding Acata Societatis Botanicorum Poloniae, 77: 23-28.

Sáez-Plaza, P., T. Michalowski, M. J. Navas, A. G. Asuero and S. Wybraniec (2013). An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure and titrimetric finish. Critical Reviews in Analytical Chemistry, 43: 178-223.

Shobhra, D. J., C. L. Goswami and R. Mungal (2004). Influence of phosphorous application on water relations, biochemical parameters and gum content in cluster bean under water deficit. Biologia Plantarum, 48: 445-448.

Stadtman, E. R. (2003). Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annual Rev. Biochem., 62: 797-821.

Stewart, G. R. and F. Larcher (1980). Accumulation of amino acids related compounds in relation to environmental stress.” In Biochemistry of Plants.” Vol. 5: Amino Acids and Derivatives (B. J. Miflin, ed.) p. 609-635.

Academic Press. New York. Strogonove, B. P., V. V. Kabanaw, L. P. Lapiana and L. S. Prykhodko (1970). Structure and function of plant cell under salinity conditions. 1st Ed., Nauka Publishing House, Moscow, Russia.

Sudhir, P., and S. D. S. Murthy (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42: 481-486.

Tamura, K., G. Stecher, D. Peterson, A. Filipski and S. Kumar (2013). MEGA6. Molecular Evolutionary Genetics Analysis V6.0. Mol. Biol. Evol., 30: 2725-2729.

Vera-Estrella, R., B. J. Barkla, H. J. Bohnert and O. Pantoja (2009). Salt stress in Mesembryanthemum crystallium L. cell suspensions activates adaptive mechanisms similar to those observed in the whole plant. Planta, 207: 426-435.

Willson, M. A., R. Burt, W. C. Lynn and L. C. Klameth (1997). Total elemental analysis digestion method evaluation on soil and clays. Commun. Soil Sci. & Plant Analysis, 28: 407-426.

White, T. J., T. Bruns, S. Lee and J. Taylor (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics In: Innis M. A., Gelfand D. H., Sninsky J. J White.

Xue, G., C. L. McIntyre, C. L. D. Jenkins, D. Glassop, A. F. van Herwaarden and R. Shorter (2008). Molecular dissection of variation in carbohydrate metabolism related to watersoluble carbohydrate accumulation in stems of wheat. Plant Physiol., 146: 441-454.

Zeng,Y. H., S. Zueng, F. T. Chun, F. C. Shuang, L. L. Chyan and T. L. Haw (2002). Digestion methods of total heavy metals in sediments and soils. Water, Air & Pollution, 141: 189-205.

Downloads

Published

2017-08-06

Issue

Section

Articles