PHYSIOLOGICAL AND MOLECULAR CHARACTERIZATION OF SOME EGYPTIAN BARLEY (Hordeum vulgare L.) CULTI-VARS FOR SALT TOLERANCE

Authors

  • SAMAH A. MARIEY Barley Research Department, Field Crops Research Institute, Agricultural Research Centre, Giza
  • MONA A. FARID Department of Genetics, Faculty of Agriculture, Kafr El-sheikh University, 33516
  • I. A. KHATAB Department of Genetics, Faculty of Agriculture, Kafr El-sheikh University, 33516

Abstract

Salinity is a major abiotic stress which affecting all crops in Egypt especially in the northern part of Nile Delta. More than 30% of the total cultivated areas are irrigated by mixed or saline water. This study was amid to evaluate and clarify the adaptive response in agro-physiological and molecular aspects of 15 Egyptian available barley cultivars. The experiment was conducted during two seasons 2012/2013 and 2013/2014 in randomized complete block design with three replications under both saline and normal conditions. The results showed that Giza 123, Giza 131 and Giza 136 had the highest number of grains spike-1, grain yield, flag leaf area and chlorophyll content under both normal and saline, which were considered as tolerant cultivars. Moreover, proline content, catalase and peroxidase activities were higher in these cultivars than activities in the sensitive cultivars under salt stress. Based on molecular analysis using informative SSR markers, the data represents in total 13 fragments with high polymorphism (100%) ranged from one to four fragments per locus with fragment sizes ranged from (120 to 290 bp). Bmag0770 primer amplified specific fragment in most tolerant cultivars, which was absent in susceptible cultivars with higher PIC value (0.79%). Dendrogram based on SSR marker successfully discriminated the barley cultivars for salt stress.

References

Abdel-Hamid, A. (2014). Physiological and molecular markers for salt tolerance in four barley cultivars. Eur. Sci. J., 10: 252-272.

Amirjani, M. R. (2010). Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology, 5: 350-360.

Anderson, J. A., G. A. Churchill, J. E. Autrique, S. D. Tanksley and M. E. Sorrells (1993). Optimizing parental selection for genetic linkage maps. Genome, 36: 181-186.

Ashraf, M. and M. R. Foolad (2007). Roles of glycinebetaine and proline in improving plant to abiotic stress tolerance. Environ. Exp. Bot., 59: 206-216.

Araus, J. L., M. P. Salfer, C. Royo and M. D. Serett (2008). Breeding for yield potential and stress adaptation in cereals. Critical Rev. Plant Sci., 27: 377-412.

Bates, I. S., R. P. Waldrn and I. D. Teare (1973). Rapid Determination of Free Proline for Water Stress. Plant Soil, 39: 205-207.

Bayoumi, T. Y., M. H. Eid and E. M. Metwali (2008). Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr. J. Biotech., 7: 2341-2352.

Bchini, R. Chaabane, M. Mosbahi, M. Ben Naceur and R. Sayar (2012). Application of salt tolerance indices for screening barley (Hordeum Vulgare L.) cultivars. International Journal of Current Research, 3: 8-13.

Ben Naceur, A., R. Chaabane, M. El-Faleh, Ch. Abdelly, D. Ramla, A. Nada, M. Sakr, M. Ben Naceur (2012). Genetic diversity analysis of North Africa’s barley using SSR markers. Journal of Genetic Engineering and Biotechnology, 10: 13-21.

Chaves, M. M., J. S. Pereira, J. Maroco, M. L. Rodrigues, C. P. Ricardo, M. L. Osorio, J. Carvalho, T. Faria and C. Pinheiro (2002). How Plants Cope with Water Stress in the Field Photosynthesis and growth. Annals of Botany, 89: 907-916.

Clark, R. B. and R. R. Duncan (1993). Selection of plants to tolerate soil salinity, acidity and mineral deficiencies. Int. Crop Sci., 1: 371-379.

Dai, Q, C. Chen, B. Feng, T. Liu, X. Tian, Y. Gong, Y. Sun, J. Wang and S. Du (2009). Effects of different NaCl concentration on the antioxidant enzymes in oilseed rape (Brassica napus L.) seedlings. Plant Growth Regulation, 59: 273-278.

Davidson, D. J. and P. M. Chevalier (1987). Influence of polyethylene Glycol-induced water deficits on tiller production in spring wheat. Crop Sci., 27: 1185-1187.

Doyle, J. J. and J. L. Doyle (1990). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Focus, 12: 13-15.

El-Akhader, A., M. Abd El-Sattar, K. Amer and T. Kumamaru (2016). Genetic diversity and association analysis among Egyptian barley (Hordeum vulgare L.) genotypes with different adaptations to saline conditions analyzed by SSR markers. AJCS, 10: 637-645.

Fotovat, R., M. Valizadeh and M. Toorehi (2007). Association between wateruse-efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J. Food. Agric. Environ., 5: 225-227.

Garland, T. Jr., P. E. Midford and A. R. Ives (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. American Zoologist, 39: 374-388.

Hammer, Ø., D. A. T. Harper and P. D. Ryan (2001). Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 1-9.

Khatab, I. A. and Mariey A. Samah (2013). Development of agronomical and molecular genetic markers associated with salt stress tolerance in some barley genotypes. Current Research Journal of Biological Sciences, 5: 198-204.

Khosravinejad, F., R. Heydari and T. Ferboodnia (2008). Antioxidant responses of two barley varieties to saline stress. Pakistan Journal of Biological Sciences, 11: 905-909.

Lobarzewski, J., M. Brzyska and A. Wojcik (1990). The influence of metal ions on the soluble and immobilized cytoplasmic cabbage peroxidase activity and its kinetics. J. Mol. Catal., 59: 373-383.

Mariey, A. Samah (2013). Molecular markers for salinity tolerance in some barley genotypes. PhD thesis Tanta University, Egypt.

Mariey, S. A., M. N. Mohamed, I. A. Khatab, A. N. EL-Banna, A. F. Abdel Khalek and M. E. Al-Dinary (2013). Genetic diversity analysis of some barley genotypes for salt tolerance using ssr markers. Journal of Agricultural Science, 5: 12-28.

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci., 7: 405-410.

Mohammad, B., V. Mostafa and M. V. Mohammad (2015). Catalase and peroxidase antioxidant enzyme activities in barley cultivars seedling under salt stress. Bull. Env. Pharmacol. Life Sci., 4: 29-35.

Muller, J. (1991). Determining leaf surface area by mean of linear measurements in wheat and triticale (brief report). Archiv Fuchtungs Frschung, 21: 121-123.

Pandey, M., C. Wagner, W. Friedt and F. Ordon (2006). Genetic relatedness and population differentiation of Himalayan hulless barley (Hordeum vulgare L.) landraces inferred with SSRs. Theor Appl Genet., 113: 715-729.

Pirasteh-Anosheh, H., G. Ranjbar, Y. Emam and M. Ashraf (2014). Salicylic acid–induced recovery ability in salt-stressed Hordeum vulgare plants. Turkish Journal of Botany, 38: 112-121.

Ramsay, L., M. Macaulay, S. Degli, K. MacLean, L. Cardle, J. Fuller, K. Edwards, S. Tuvesson, M. Morgante, A. Massari, E. Maestri, N. Marmiroli, T. Sjakste, M. Ganal, W. Powell and R. Waugh (2000). A simple sequence repeat-based linkage map of barley. Genetics, 156: 1997-2005.

Russel, D. (1996). MSTAT, Director. Crop and soil science department, Michigan state university, USA.

Sadasivam, S. and A. Manickam (1996). Biochemical Methods, New Age International Publishers (P) Ltd., New Delhi, India.

Saghai-Maroof, M., R. Biyashev, G. Yang, Q. Zhang and R. Allard (1994). Extraordinarily polymorphic microsatellite DNA in barley: species diversity, hromosomal locations, and population dynamics. Paper presented at the 91st Proceedings of the National Academy of Sciences of the United States of America, 7: 5466-5470.

Sayar, R., H. Bchini, M. Mosbahi and H. Khemira (2010). Response of durum wheat (Triticum Durum Desf.) growth to salt and drought stresses. Czech J. Genet. Plant Breed, 46: 54-63.

Schlemmer, M. R., D. D. Francis, J. F. Shanahan and J. S. Schepers (2005). Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content. Agron. J., 97: 106-112.

Shao, H. B., Z. S. Liang and M. A. Shao (2007). Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids Surf., 47: 32-139.

Unal T. B., L. Y. Aktas and A. Guven (2014). Effects of salinity on antioxidant enzymes and proline in leaves of barley seedlings in different growth stages. Bulg. J. Agric. Sci., 20: 883-887.

Varshney, R., T. Marcel, L. Ramsay, J. Russell, M. Rӧder, N. Stein, R. Waugh, P. Langridge, R. Niks and A. Graner (2007). A high density barley microsatellite consensus map with 775 SSR loci. Theor. Appl. Genet., 6: 1091-1103.

Walia, H., C. Wilson, A. Wahid, P. Condamine, X. Cui and T. J. Close (2006). Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Functional and integrative Genomics, 6: 143-156.

Yildiz, M. and H. Terzi (2013). Effect of NaCl stress on chlorophyll biosynthesis, proline, lipid peroxidation and antioxidative enzymes in leaves of salt-tolerant and salt-sensitive barley cultivars. J. Agri. Sci., 19: 79-88.

Downloads

Published

2017-01-19

Issue

Section

Articles