MOLECULAR GENETIC DIVERSITY AND EFFICIENT PLANT REGENERATION SYSTEM VIA SOMATIC EMBRYOGENESIS IN SWEET POTATO (Ipomoea batatas (L.) Lam.)

Authors

  • AZIZA A. ABOULILA Genetics Department, Faculty of Agriculture, Kafr Elsheikh University

Abstract

Somatic embryogenesis and plant regeneration at high frequency have been restricted to few sweet potato varieties. For enhancing and accelerating somatic embryogenesis from stem segments of the Egyptian sweet potato cultivar Abees were investigated using three different phytohormones; 2,4-dichlorophenoxy-acetic acid (2,4-D), benzyleaminopurine (BAP) and indole acetic acid (IAA). The phytohormone BAP was found to be the best for the induction of embryogenic calli and most studied traits. Data analysis showed a significant variation in three different tissue culture media for all parameters, expect root induction percentage. Two different isozymes; peroxidase (PRX) and α naphthyl acetate esterase (EST) were used and analyzed to determine the genetic variability among the regenerated plants. The two analyzed isozymes successively showed polymorphic variations among the parent and 98 sweet potato plants regenerated from the three different callus induction media. Peroxidase isozyme produced seven polymorphic bands showing genetic variation as compared to the control (Abees cultivar), while esterase isozyme produced only three polymorphic bands. The regenerated plants exhibited somaclonal variations that can be utilized for selection of desired traits in sweet potato. On the other hand, five RAPD primers were used for assessment of genetic diversity in the somaclonal variants compared with control. A total of 68 RAPD loci were amplified with molecular size range of 300–3000 bp with 13.6 loci per each primer. Out of the 68 loci scored, 26 loci (38.24%) were found to be polymorphic and the polymorphism% ranged between 18.18% for (OPB-05) and 75% for (OPB-07). Moreover, all primers produced positive and negative unique DNA bands, except OPB-05 for negative unique bands and OPB-07 for positive unique bands. The same result was confirmed by the cluster and principal coordinate analyses for the positions of somaclonal variant no. 4 which showed high diversity from the parental cultivar.

References

Abd El-Aziz, M. H. and R. M. M. Habiba (2016). Molecular assessment of genetic diversity in some canola homozygous lines. Egypt. J. Genet. Cytol., 45: 129-145.

Aboulila, A. (2009). Genetical response for gene transfer and somaclonal variations of some plant genera. MSc. Thesis. Genetic Department, Faculty of Agriculture, Kafr -Elsheikh University, Egypt.

Adhikari, S., S. Saha, T. K. Bandyopadhyay and P. Ghosh (2015). Efficiency of ISSR marker for characterization of Cymbopogon germplasms and their suitability in molecular barcoding. Plant Systematics and Evolution, 301:439-450.

Al-Mazrooei, S., M. H. Bhatti, G. G. Henshaw, N. J. Taylor and D. Blakesley (1997). Optimization of somatic embryogenesis in fourteen cultivars of sweet potato (Ipomoea batatas L. Lam.). Plant Cell Rep., 16: 710-714.

Anwar, N., A. Kikuchi and K. N. Watanabe (2010). Assessment of somaclonal variation for salinity tolerance in sweet potato regenerated plants. African J. Biotechnol., 9: 7256-7265.

Bordallo, P. N., D. H. Silva, J. Maria, C. D. Cruz and E. P. Fontes (2004). Somaclonal variation in in vitro callus cultures of potato cultivars. Hortic. Bras., 22: 34-44.

Boukamp, J. C. (1985). Sweet potato products: A natural resource for Tropics. CRC Press USA, pp271.

Christensen, J., G. Bauw, K. Welinder, M. Montagu and W. Boerjan (1998). Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol., 118: 125-135.

Dalisay, R. F. and J. A. Kuc (1995). Persistence of reduced penetration by Colletotrichum lagenarium into cucumber leaves with induced systemic resistance and its relation to enhanced peroxidases and chitinase activity. Physiol. Mol. Plant. Pathol., 47: 315-327.

Dasgupta, M., M. R. Sahoo, P. C. Kole and A. Mukherjee (2008). Relationship of yield contributing characters in sweet potato (Ipomoea batatas L.) under salinity stress. Orissa J. Hortic., 35: 27-31.

Duncan, D. B. (1955). Multiple range and multiple F test. Biometrics, 11: 1-42.

FAOSTAT data (2008). Statistical database (online) of Food and Agriculture Organization of the United Nations.: Available in: http://faostat.fao.org/site/567/default.aspx.

Feng, C., Z. Yin, Y. Ma, Z. Zhang, L. Chen, B. Wang, B. Li, Y. Huang and Q. Wang (2011). Cryopreservation of sweetpotato (Ipomoea batatas) and its pathogen eradication by cryotherapy. Biotechnol. Adv., 29: 84-93.

González, R. G., D. S. Sánchez, Z. Z. Guerra, J. M. Campos, A. L. Quesada, R. M. Valdivia, A. D. Arencibia, K. Q. Bravo and P. D. S. Caligari (2008). Efficient regeneration and Agrobacterium tumefaciens mediated transformation of recalcitrant sweetpotato (Ipomoea batatas L.) cultivars. Asia. Pac. J. Mol. Biol. Biotechnol. 16.

Guo, J. M., Q. C. Liu, H. Zhai and Y. P. Wang (2006). Regeneration of plants from Ipomoea cairica L. protoplasts and production of somatic hybrids between I. cairica L. and sweetpotato, I. batatas (L.) Lam. Plant Cell Tissue Organ. Cult., 87: 321-327.

Hagenimana, V., E. E. Carey, S. T. Gichuki, M. A. Oyunga and J. K. Imungi (1999). Carotenoid contents in fresh dried and processed sweet potato products. Ecol. Food Nutr., 37: 455-474.

He, X., Q. Liu, K. Ishiki, H. Zhai and Y. Wang (2006). Genetic Diversity and genetic relationships among Chinese Sweetpotato landraces revealed by RAPD and AFLP markers. Breed. Sci., 56: 201-207.

Iglesias, L., A. Estevez, E. Costa and I. Rodriguez (1995). Variation in the composition of isoenzymes peroxidase in potato (Solanum tuberosum L.). Cultivos Tropicales, 16: 51-53.

Jain, S. M. (2001). Tissue culture-derived variation in crop improvement. Euphytica, 118: 153-166.

Kreuze, J. F., I. S. Klein, M. U. Lazaro, W. C. Chuquiyuri, G. L. Morgan, P. G. C. Mejía, M. Ghislain and J. P. T. Valkonen (2008). RNA silencing-mediated resistance to a crinivirus (Closteroviridae) in cultivated sweetpotato (Ipomoea batatas L.) and development of sweetpotato virus disease following co-infection with a potyvirus. Mol. Plant Pathol., 9: 589-598.

Laemmli, U. K. (1970). Clavage of structural protein during assembly of head bacteriophage T. Nature, 227: 680-685.

Lara, R. M., M. Florido, D. Plana, O. More, M. E. Gonzalez, M. Alvarez and M. M. Hernandez (2003). Isozymatic analysis for detecting In vitro variability and/ or stability of economically important crops. Cultivos Tropic., 24: 56-62.

Loebenstein, G., S. Fuentes, J. Cohen and L. F. Salazar (2003). Sweet potato. In Loebenstein G and Thottappilly G (ed/s) virus and virus-like diseases of major crops in developing countries. Kluwer Academic Publishers, Dordrecht, The Netherlands, 223-248.

Luo, H. R., M. Santa Maria, J. Benavides, D. P. Zhang, Y. Z. Zhang and M. Ghislain (2006). Rapid genetic transformation of sweetpotato (Ipomoea batatas (L.) Lam) via organogenesis. Afr. J. Biotechnol., 5: 1851-1857.

Morán, R., R. García, A. López, Z. Zaldúa, J. Mena, M. García, R. Armas, D. Somonte, J. Rodríguez, M. Gómez and E. Pimentel (1998). Transgenic sweet potato plants carrying the delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis. Plant Sci., 139: 175-184.

Moulin, M. M., R. Rodrigues, L. S. A. Gonçalvez, C. P. Sundré and M. G. A. Pereira (2012). Comparison of RAPD and ISSR markers reveals genetic diversity among sweet potato landraces (Ipomoea batatas (L.) Lam.). Acta Scientiarum Agro., 34: 139-147.

Murashige, T. and F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15: 473-497.

Murray, M. G. and W. F. Thompson (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res., 8: 4321-3425.

Nadia, A., K. Akira and N. W. Kazuo (2010). Assessment of somaclonal variation for salinity tolerance in sweet potato regenerated plants. African J. Biotech., 9: 7256-7265.

Nei, M. and W. H. Li (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci., USA, 76: 5269-5273.

Oppong-Konadu, E. Y. R., R. K. Akromah, H. Adu-Dapaah and E. O. Kai (2005). Genetic diversity within Ghanaian cowpea germplasm based on SDS-PAGE of seed proteins. African Crop Sci., 3: 117-123.

Otani, M., Y. Wakita and T. Shimada (2003). Production of herbicide-resistant sweetpotato (Ipomoea batatas (L) Lam.) plants by Agrobacterium tumefaciens-mediated transformation. Breed. Sci., 53: 145-148.

Rafalski, J. A. and S. V. Tingey (1993). Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends in Genet., 9: 275-280.

Rahim, A. M., A. A. Mia, F. Mahmud and K. S. Afrin (2008). Multivariate analysis in some mungbean (Vigna radiata L. Wilczek) accessions on the basis of agronomic traits. American-Eurasian J. Scientific Res., 3: 217-221

Saha, S., H. Sen, S. Pal, S. K. Bandyopadhyay and N. Mandal (2000). Biochemical characterisation of sweet potato genotypes by storage protein and isozyme electrophoresis. J. Interacademicia, 4: 386-393.

Scandalios, J. G. (1964). Tissue specific isozyme variation in maize. J. Heredity, 55: 281-285.

Scandalios, J. G. (1969). Genetic control of mutiplex molecular forms of enzymes in plant. Biochem. Gent., 3: 37-79.

Selvaraj, I., P. Nagarajan, K. Thiyagarajan and M. Bharathi (2010). Predicting the relationship between molecular marker heterozygosity and hybrid performance using RAPD markers in rice (Oryza sativa L.). African J. Biotech., 9: 7641-7653.

Sesli, M. and E. D. Yeğenoğlu (2010). Genetic relationships among and within wild and cultivated olives based on RAPDs. Genet. and Mol. Res., 9: 1550-1556.

Smy´kal, P., L. Valledor, R. Rodrı´guez and M. Griga (2007). Assessment of genetic and epigenetic stability in longterm in vitro culture of pea (Pisum sativum L.). Plant Cell Rep., 26: 1985-1998.

Solis, J. S., D. M. Ulloa and L. A. Rodriguez (2007). Molecular description and similarity relationships among native germplasm potatoes (Solanum tuberosum ssp. Tuberosum L.) using morphological data and AFLP markers. Electr. J. Biotech., 10: 436-443.

Song, G. Q., H. Honda and K. I. Yamagu-chi (2004). Efficient Agrobacterium tumefaciens-mediated transformation of sweetpotato (Ipomoea batatas (L. Lam.) from stem explants using a two-step kanamycin-hygromycin selection method. In vitro Cell Dev. Plant, 40: 359-365.

Sonja, G., B. Snjezana, P. Svetislav, C. Tihomir, T. Marijana and K. Vinko (2008). Comparison of morphological and RAPD markers in evaluation of red clover (Trifolium pratense L.) changes caused by natural selection. Periodicum Biologorum, 110: 237-242.

Spooner, D. M., K. Mclean, G. Ramsay, R. Waugh and G. J. Bryan (2005). Single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. PNAS, 102: 14694-14699.

Williams, J. G. J., A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res., 18: 6531-6535.

Woolfe, J. A. (1992). Sweetpotato: An Untapped Food Resource. Cambridge University Press, Cambridge, UK.

Yu, B., H. Zhai, Y. Wang, N. Zang, S. He and Q. Liu (2007). Efficient Agrobacterium tumefaciens-mediated transformation using embryogenic suspension cultures in sweet potato, Ipomoea batatas (L.) Lam. Plant Cell Tiss. Org. Cult., 90: 265-273.

Zhang, D., M. Ghislain, Z. Huaman, A. Golmirzaie and R. Hijmans (1998). RAPD variation in sweetpotato (Ipomoea batatas (L.) Lam) cultivars from South America and Papua New Guinea. Genet. Reso. and Crop Evol., 45: 271-277.

Downloads

Published

2017-01-19

Issue

Section

Articles

Most read articles by the same author(s)