Sixteen Simple Sequence Repeats (SSR) and three Inter Simple Sequence Repeats (ISSR) primers were used to estimate the genetic diversity and its distribution in twenty garlic clones. A high level of polymorphism amongst studied clones was found with both SSR and ISSR markers. The total number of bands that were detected by all used primers was 75 including 6 monomorphic, 5 unique and 64 polymorphic. The percentage of polymorphism identified by SSR primers were varied between 33.3 and 100. However, all of the studied ISSR primers were polymorphic conferring a 100% of polymorphism. Results showed that each of the Asa14, Asa17, Asa18 and Asa59 primers generated one monomorphic band of 77, 120, 102 and 113 bp, respectively, in all of the studded garlic clones. Two monomorphic bands of 104 and 177 bp were generated by using Asa24 primer. Asa17 and Asa59 SSR primers produced only one unique band of 154 (Egaseed 2) and 646 bp (EGA 1), respectively. Two unique bands of 225 and 250 bp were detected for Egaseed 2 (ft) by using HB 13 ISSR primer. The highest similarity value (0.969) was found between AZO 2 and AZO 3, while the lowest value (0.482) was found between AZO 4 and EGA 5 clones. Dendrogram of genetic distances amongst all tested clones showed two distinct major clusters with overlapping. In general, the present results reveal the importance of using molecular markers to assess genetic diversity among such closely related genotypes which were difficult to distinguish with other markers.

Full Text:



Agrama, H. A., G. C. Eizenga and W. Yan (2007). Association mapping of yield and its components in rice cultivars. Mol. Breed., 19: 341-356.

Al-Humaid, A., M. I. Motawei, M. Y. Abdalla and F. Mana (2004). Detection of genetic variation and fusarium resistance in turfgrass genotypes using PCR-based markers (ISSR and SCAR). Food, Agriculture & Environment, 2: 225-229.

Al-Otayk, S., M. Z. El-Shinawy and M. I. Motawei (2008). Variation in productive characteristics and diversity assessment of garlic cultivars and lines using DNA markers. JKAU: Met., Env. & Arid Land Agric. Sci., 20: 63-79.

Arzanlou, M. and S. Bohlooli (2010). Introducing of [sic] green garlic plant as a new source of allicin. Food Chemistry, 120: 179-183.

Bachmann, K., F. Blattner, D. Fischer, N. Freisen, R. Fritsch, M. Klaas, T. Mes and S. Pollner (2001). Molecular markers in Allium: range of application, reliability and taxonomic implications. Acta Hort., 546: 159-163.

Cunha, C. P., E. S. S. Hoogerheide, M. I. Zucchi, M. Monteiro and J. B. Pinheiro (2012). New microsatellite markers for garlic, Allium Sativum (Alliaceae). American Journal of Botany, 99: e17-e19.

Dagani, C., J. Deng, A. Beiles, R. El Batsri, M. Goren and S. Gazit (2003). Identifying Lychee (Litchi chinensis Sonn) cultivars and their relationships using Inter simple Sequence Repeat (ISSR) markers. J. Amer. Soc. Hort. Sci., 128: 838-845.

Etoh, T. and P. W. Simon (2002). Diversity, fertility and seed production of garlic. In H. D. Rabinovitch, & L. Currah (Eds.), Allium crop science: Recent advances (p. 101-117). CABI Publishing, Wallingford, UK.

GelAnalyzer, Version three, (2007). Gel Analyzer Ver.3 program software for windows.

He, G. H., R. H. Meng, M. Newman, G. Q. Gao, R. N. Pittman, and C. S. Prakash (2003). Microsatellites as DNA markers in cultivated peanut. BMC Plant Biol., 3: 3-11.

Ipek, M. and P. W. Simon (2001). Genetic diversity in garlic (Allium sativum L.) as assessed by amplified fragment length polymorphism (AFLP)s and isozymes. HortSci., 36: 454.

Ipek, M., A. Ipek and P. W. Simon (2003). Comparison of AFLPs, RAPD markers, and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collection. J. Am. Soc. Hort. Sci., 128: 246-252.

Ipek, M., A. Ipek, S. G. Almquist and P. W. Simon (2005). Demonstration of linkage and development of the first low-density genetic map of garlic, based on AFLP markers. Theor. Appl. Genet., 110: 228-236.

Ipek, M., A. I. Philipp and W. Simon (2008). Molecular characterization of Kastamonu garlic: an economically important garlic clone in Turkey. Sci. Hort., 115: 203-208.

Lampasona, G. S., L. Martı´nez and J. L. Burba (2003). Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (Amplified Fragment Length Polymorphism). Euphytica, 132: 115-119.

Lee, H. R., E. M. Eom, Y. P. Lim, J. W. Bang and D. H. Lee (2003). Construction of a garlic BAC library and chromosomal assignment of BAC clones using the FISH technique. Genome, 46: 514-520.

Li, Z. K., S. B. Yu, H. R. Lafitte, L. Huang, B. Courtois, S. Hittalmani, C. H. M. Vijayakumar, G. F. Liu, G. C. Wang, J. Y. Zhuang, H. E. Shashidhar, K. L. Zheng, V. P. Singh, J. S. Sidhu, S. Srivantaneeyakul and G. S. Khush (2003). QTL x environment interactions in rice. I. Heading date and plant height. Theor. Appl. Genet., 108: 141-153.

Ma, K. H., J. G. Kwag, W. Zhao, A. Dixit, G. A. Lee, H. H. Kim, I. M. Chung, N. S. Kim, J. S. Lee, J. J. Ji, T. S. Kim and Y. J. Park (2009). Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Hort. Sci., 122: 355-361.

Moe, K. T., W. Zhao, H. S. Song, Y. H. Kim, J. W. Chung, Y. I. Cho, P. H. Park, H. S. Park, S. C. Chae and Y. J. Park (2010). Development of SSR markers to study diversity in the genus Cymbidium. Biochem. Syst. Ecol., 38: 585-594.

Nagaraju, J., M. Kathirvel, R. Ramesh Kumar, E. A. Siddiq and S. E. Hasnain (2002). Genetic analysis of traditional and evolved Basmati and non-Basmati rice varieties by using fluorescence based ISSR-PCR and SSR markers, PNAS, 99: 58-36.

Okpul, T., E. S. Mace, I. D. Godwin, D. Singh and M. E. Wagih (2005). Evaluation of variability among breeding lines and cultivars of taro (Colocasia esculenta) in Papua New Guinea using ISSR fingerprinting and agro-morphological characterization. PGR Newsletter, 143: 8-16.

Osman, S. A. M., A. T. M. Ata and S. E. N. H. Gad El-Hak (2007). Morphological, germination, bolting and cytogenetical characteristics of fourteen promising garlic genotypes. Afri. Crop Sci. Conf. Proc., 8: 2005-2012.

Panthee, D. R., R. B. KC, H. N. Regmi, P. P. Subedi, S. Bhattarai and J. Dhakal (2006). Diversity analysis of garlic (Allium sativum L.) germplasms available in Nepal based on morphological characters. Genet. Resource Crop Evol., 53: 205-212.

Rana, S. V., R. Pal, K. Vaiphei, S. K. Sharma and R. P. Ola (2011). Garlic in health and disease. Nutrition Research Reviews, 24: 60-71.

Salhi-Hannachi, A., M. Trifi, S. Zehdi, J. Hedhfi, M. Mars, A. Rhouma and M. Marrakchi (2004). Inter-simple sequence repeat fingerprints to assess genetic diversity in Tunisian fig (Ficus carica L.) germplasm. Genet. Res. and Crop Evol., 51: 269-275.

Salhi-Hannachi, A., K. Chatti, M. Mars, M. Marrakchi and M. Trifi (2005). Comparative analysis of genetic diversity in two Tunisian collections of fig cultivars based on random amplified polymorphic DNA and inter simple sequence repeats fingerprints. Genet. Res. and Crop Evol., 52: 563-573.

Sambrook, J., E. F. Fritsch and T. Maniatis (1989). Molecular cloning: A Laboratory Manual Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.

Volk, G. M., A. D. Henk and C. M. Richards (2004). Genetic diversity among US garlic clones as detected using AFLP methods. J. Amer. Soc. Hort. Sci., 129: 559-569.

Xu, P., Y. Chongliang, Q. Shisong and C. Y. Yang (2005). A preliminary study on genetic analysis and purity assessment of the garlic germplasm and seed bulbs by the finger printing technique. Acta. Hort., 688: 29-33.

Zietkiewicz, E., A. Rafalski and D. Labuda (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20: 176-18.


  • There are currently no refbacks.

Copyright (c) 2017 Egyptian Journal of Genetics And Cytology

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.