DEVELOPMENT OF SSR & STS MOLECULAR MARKERS ASSO-CIATED WITH STEM RUST RESISTANCE IN BREAD WHEAT (Triticum aestivum L.)

M. A. RASHED, A. H. ATTA, T. M. SHEHAB EL-DIN, A. M. MOSTAFA

Abstract


Screening experiment was performed on twelve genotypes of bread wheat (Ttriticum aestivum L.) to select the most stem rust resistant genotype (Misr1) and the most stem rust susceptible genotypes (Line 37 and Line 92) according to stem rust reaction. Crosses were carried out between the resistant parent (Misr1) with each of the susceptible parents as well as between the two susceptible parents (Line 37 and Line 92) to obtain the F1 kernels. Some of the F1 kernels were sown in the field and selfed to obtain the F2 kernels for each cross. These three selected parents, their F1 and the most resistant and susceptible F2 plant groups for the three crosses were evaluated for their response to stem rust resistance by recording some stem rust–related traits. However, infected condition caused a reduction in the values of all traits except spike length and number of spikelets per spike traits. The three parents, their F1 plants and some individual plants of the two contrasting F2 plant groups (the most resistant and the most susceptible F2 groups) for the three crosses were used to develop some molecular genetic markers associated with stem rust resistance using SSR and STS markers. The results indicated the presence of two positive markers out of the three SSR and three STS primers which used in this study. Sr2 (SSR) and Sr25 (STS) primers gave positive markers at fragment sizes of 120 and 130 bp, respectively, for stem rust resistance that could be considered as reliable markers for stem rust resistance in bread wheat (Ttriticum aestivum L.).

Full Text:

PDF

References


Abdel-Tawab, F. M., C. W. Stuber, M. A. Rashed, A. Bahieldin and A. H. Atta (1998). Genome mapping and detection of QTLs linked with salt tolerance in maize. Proceed. Int. Conf. Mol. Genet., 230-248.

Abdel-Tawab, F. M., Eman M. Fahmy, A. Bahieldin, Asmahan A. Mahmoud, H. T. Mahfouz, Hala F. Eissa and O. Moseilhy (2003). Marker assisted selection for drought tolerance in Egyptian bread wheat (Triticum aestivum L.). Egypt. J. Genet. Cytol., 32: 34-65.

Agric. Economics and Statistics Department, Ministry of Agriculture, Egypt (2015).

Akhter, Z., A. K. M. Shamsuddin, M. M. Rohman, M. S. Uddin, M. Mohi-Ud-din and A. K. M. M. Alam (2003). Studies on heterosis for yield and yield components in wheat. J. Bio. Sci., 10, 3: 892-897.

Atta, A. H., M. A. Rashed, M. S. Abdel-Hady and Hoda M. H. Elnaggar (2006). Marker-assisted selection for iron deficiency tolerance in maize. J. Biol. Chem. Environ. Sci., 1: 205-224.

Bai, D., D. R. Knott and J. M. Zale (1997). The inheritance of leaf and stem rust resistance in Triticum monococcum L. Can. J. Plant Sci., 78: 223-226.

Bariana, H. S., M. J. Hayden, N. U. Ahmed, J. A. Bell, P. J. Sharp and R. A. McIntosh (2001). Mapping of durable adult plant and seedling resistances to stripe rust and stem rust diseases in wheat. Aust. J. Agric. Res., 52: 1247-1255.

Biffen, R. H. (1905). Mendel's laws of inheritance and wheat breeding. J. Agric. Sci., 1: 4-48.

Darwish, M. A. H. A. (2011). Genetical studies on some rusts in bread wheat Ph.D. Thesis, Fac. of Agric, Tanta, Univ., Egypt.

Dellaporta, S. L., J. Wood and J. B. Hicks (1983). A plant DNA mini preparation. Version III. Plant Mol. Biol., 1: 19-21.

Dyck, P. L. (1991). Genetic of adult plant leaf rust resistance in Chinese spring and Sturdy wheat. Crop Sci., 31: 309-311.

Edwards, M. D, T. T. Helntijaris, S. Wright and C. W. Stuber (1992). Molecular marker facilitated investigation of quantitative trait loci in maize. 4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism. Theor. Appl. Genet., 83: 765-74.

El-Hawary, M. N. A. (2010). Breeding for stress tolerance in some bread wheat. Ph. D. Thesis, Fac. of Agric, Mansoura Univ., Egypt.

Ganeva, G., M. Todorova and H. Kurzhin (2001). Inheritance of the resistance to the causative agent of the brown rust in wheat varieties and lines. Rasteniev" dni Nauki 38: 181-185. (C.F. Review of Plant Patho. 81: 9352).

Gold, J., D. Harder, F. Townley-Smith, T. Aung and J. Procunier (1999). Development of a molecular marker for rust resistance gene Sr39 and Lr35 in wheat breeding lines. EJB Elect. J. Biotech., 2.

Haley, S. D., J. J. Johnson, F. B. Peairs, J. S. Quick, J. A. Stromberger, and J. D. Butler (2008). Registration of 'Bill Brown' wheat. Journal of Plant Registrations, 2: 218-223.

Hayden, M. J., H. Kuchel, and K. J. Chalmers (2004). Sequence tagged microsatellites for the Xgwm533 locus provides new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat (Triticum aestivum L.). Theor., Appl. Genet., 109: 1641-1647.

Hendawy, F. A., H. A. Dawwam, M. A. Abo Shereif and E. L. El-Massry (2009). Detection of epistasis in the inheritance of grain yield and its components in bread wheat. Minufiya J. Agric. Res., 34: 625-640.

Jourdren, C., P. Barret, R. Horvais, N. Foisset, R. Delourme and M. Renard (1996). Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Mol. Breeding, 2: 61-71.

Khattab, A. B. (2009). Genetic behavior of some traits of bread wheat (Triticum aestivum L.). J. Agric. Res. Kafr El-Sheikh Univ., 35: 446-479.

Mago, R., H. S. Bariana, I. S. Dundas, W. Spielmeyer, G. J. Lawrence, A. J. Pryor and J. G. Ellis (2005). Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor., Appl. Genet., 111: 496-504

McIntosh, R. A., C. R. Wellings and R. F. Park (1995). Wheat Rusts: An Atlas of Resistance Genes.

Michelmore, R. W., I. Paran and R. V. Kessel (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA, 88: 9829-9832

Naqvi, N. I., J. M. Bonman, D. J. Mackill, R. J. Nelson and B. B Chattoo (1995). Identification of RAPD markers linked to a major blast resistance gene in rice. Mol. Breeding, 1: 341-348.

Nachit, M. M, P. Monneveux, M. E. Sorrells, C. Royo, N. Fonzo and J. L. Araus (2000). Relationship of dry-land productivity and drought tolerance with some molecular markers for possible MAS in durum (Triticum turgidum L. var. durum). Durum wheat improvement in the Mediterranean region: new challenges. Proceedings of a Seminar, Zaragoza, Spain, 40: 203-206.

Nawar, A. A., T. M. Shehab El-Din, A. N. Khalil, H. H. Nagaty and K. E. Ragab (2010). Inheritance nature of leaf rust resistance and some agronomic characters in bread wheat. J. of Plant Production, 1: 417-429.

Onweller, K. M. (2011). Disease and insect resistance and quality characterization of six CIMMYT synthetic hexaploid wheats. Unpublished M.Sc., University of Nebraska- Lincoln. Retreived May 20, 2012, from http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1031&context=agronhort diss

Patil, J. V., A. B. Deokar and R. B. Deshmukh (2000). Genetic analysis of three wheat cultivars for reaction to stem rust of wheat. Indian J. Agric. Res. 34: 275-277. (C.F. Review of Plant Pathology 81(9): 8192).

Penner, G. A., S. J. Lee, L. J. Bezte and E. Ugali (1996). Rapid RAPD screening of plant DNA using dot blot hybridization. Molecular Breeding, 2: 7-10.

Rashed, M. A., A. Abo-Doma, H. El-Rashidy and K. Khaled (2006). Molecular genetic characterization for some loci controlling salt tolerance in Sorghum bicolor (L). Egypt. J. Genet. Cytol., 35: 145-155.

Röder, M. S., K. Wendehake, V. Korzun, G. Bredemeijer, D. Laborie, L. Bertand, P. Isaac, S. Rendell, J. Jackson, R. J. Cooke, B. Vosman, and M. W. Gamal (2002). Construction and analysis of a microsatellite-based database of European wheat varieties. Theor. Appl. Genet., 95: 714-722.

Shehab El-Din, T. M., M. A. Gouda, S. Abouel-Naga and M. M. EL-Shami (1991). Quantitative study on wheat resistance to stem rust caused by Puccinia graminis tritici. J. Agric. Sci. Mansoura Univ., 16: 1298-1303

Shehab El-Din, T. M. and A. H. Abd El-latif (1996). Quantitative determination of the gene action of stripe rust resistance in a 6-parent diallel cross of wheat. J. Agric. Sci. Mansoura Univ., 21, 10: 3461-3467.

Singh, R. P., A. Mujeeb-Kazi and J. Huerta-Espino (1998). Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathol., 88: 891- 894.

Snedecor, C. W. and W. G. Cochran (1969). Statistical methods 6th Ed. Lowa State Univ. Press, Ames, lowa, USA.

Talbert, L. E., S. P. Lanning, R. L. Murphy and J. M. Martin (2001). Grain filling duration in twelve hard red spring wheat crosses: genetical variation and association with other agronomic traits. Crop Sci., 41: 1390-1395.

Tammam A. M. (2005). Generation mean analysis in bread wheat under different environmental conditions. Minufiya J. Agric. Res., 30: 937-956.

Tsilo, T. J., Y. Jin and J. A. Anderson (2008). Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop Sci., 48: 253-261.

Wang, R. R. C., J. Chen and L. R. Joppa (1995). Production and identification of chromosome specific RAPD markers for Langdon durum wheat disomic substitution lines. Crop Sci., 35: 886-888.

Williams, J. G. K, A. R. Kubelik, K. J. Livak, J. A. Rafalski and S. V. Tingey (1990). DNA polymorphisms amplified by arabitrary primers are useful as genetic markers. Nucleic Acids Res., 18: 6531-6535.

Yadav, B., C. S. Tyagi and D. Singh (1998). Genetical studies and transgressive segregation for field resistance to leaf rust of wheat. Wheat Info. Serv., 87:15-21.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Egyptian Journal of Genetics And Cytology

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.