The NADPH-Thioredoxin System (NTS) and NADPH Glutathione System (NGS) are the two major thiol reduction systems that play a key role in the maintenance of cellular redox homeostasis and several plant developmental processes. Crosstalk between these two thiol reduction systems has been studied by associating TRX reductase (ntra ntrb) and glutathione biosynthesis (cad2) mutations. Triple ntra ntrb cad2 mutant revealed a new phenotype related to flower meristem development. Unfortunately, this mutant is unfertile and therefore it cannot be maintained at a homozygous stage. In this study, we used the RNAi technique to obtain close similar phenotype to this mutant, but that are fertile. RNAi strategy is performed by down-regulating the expression of both NTR genes by introducing RNAi construct harbouring two head-to-tail copies of the NTRA gene in the genetic background of the cad2 mutant. The transformed plants obtained exhibit attenuated phenotypes compared to the ntra ntrb cad2 mutant. Remarkably, no plants exhibit the characteristic pin-like phenotype of the ntra ntrb cad2 mutant was obtained. However, some plants looks fertile but show a decrease of the apical dominance. Others are more affected and show unfertile flowers. Our data show that the RNAi strategy is an efficient strategy to generate fertile plants with down-regulated NTS and NGS reduction systems and to investigate the crosstalk between these two thiol systems.

Full Text:



Bashandy, T., J. Guilleminot, T. Vernoux, D. Caparros-Ruiz, K. Ljung, Y. Meyer and J. P. Reichheld (2010). Interplay between the NADP-linked thioredoxin and glutathione systems in Arabidopsis auxin signaling. Plant Cell, 22: 376-391.

Baulcombe, D. C. (2004). RNA silencing in plants. Nature, 431: 356-363.

Benitez-Alfonso, Y., M. Cilia, A. San Roman, C. Thomas, A. Maule, S. Hearn and D. Jackson (2009). Control of Arabidopsis meristem development by thioredoxin-dependent regulation of inter-cellular transport. Proc. Natl. Acad. Sci. USA, 106: 3615-3620.

Buchanan, B. B. and Y. Balmer (2005). Redox regulation: A broadening horizon. Annu. Rev. Plant. Biol., 56: 187-220.

Carmel-Harel, O. and G. Storz (2000). Roles of the glutathione and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol., 54: 439-461.

Carthew, R. W. (2001). Gene silencing by double-stranded RNA. Curr. Opin. Cell. Biol., 13: 244-248.

Cheng, N. H., J. Z. Liu, X. Liu, Q. Wu, S. M. Thompson, J. Lin, J. Cheng, S. A. Whitham, S. Park, J. D. Cohen and K. D. Hirschi (2011). Arabidopsis monothiol glutaredoxin, AtGRXS17, is critical for temperature-dependent postembryonic growth and development via modulating auxin response. J. Biol. Chem., 286: 20398-20406.

Chuang, C. F. and E. M. Meyerowitz (2000). Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA, 97: 4985-4990.

Clough, S. J. and A. F. Bent (1998). Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J., 16: 735-743.

Dang, T. T., S. Windelinckx, I. M. Henry, B. D. Coninck, B. P. Cammue, R. Swennen and S. Remy (2014). Assessment of RNAi-induced silencing in banana (Musa spp.). BMC Res. Not., 7: 655-666.

Gelhaye, E., N. Rouhier and J. P. Jacquot (2003). Evidence for a subgroup of thioredoxin h that requires GSH/Grx for its reduction. FEBS Lett., 555: 443-448.

Howden, R., C. R. Andersen, P. B. Goldsbrough and C. S. Cobbett (1995). A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiol., 107: 1067-1073.

Jiang, F., J. Y. Wang, H. F. Jia, W. S. Jia, H. Q. Wang and M. Xiao (2013). RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit. J. Plant Growth Regul., 32: 182-190.

Kanzok, S. M., A. Fechner, H. Bauer, J. K. Ulschmid, H. M. Müller and J. Botella-Munoz, S. Stephan, R. Heiner Schirmer and K. Becker (2001). Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science, 291: 643-646.

Karimi, M., D. Inze and A. Depicker (2002). Gateway vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci., 7: 193-195.

Koh, C. S., N. Navrot, C. Didierjean, N. Rouhier, M. Hirasawa, D. B. Knaff, G. Wingsle, R. Samian, J. P. Jacquot, C. Corbier and E. Gelhaye (2008). An atypical catalytic mechanism involving three cysteines of thioredoxin. J. Biol. Chem., 283: 23062-23072.

Laloi, C., D. Mestres-Ortega, Y. Marco, Y. Meyer and J. P. Reichheld (2004). The Arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor. Plant Physiol., 134: 1006-1016.

Marchal, C., V. Delorme-Hinoux, L. Bariat, C. Belin, J. Saez-Vasquez, C. Riondet and J. P. Reichheld (2014). NTR/NRX define a new thioredoxin system in the nucleus of Arabidopsis thaliana cells. Mol. Plant, 7: 30-44.

Marty, L., W. Siala, M. Schwarzländer, M. D. Fricker, M. Wirtz and L. J. Sweetlove, Y. Meyer, A. J. Meyer, J. P. Reichheld and R. Hell (2009). The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc. Natl. Acad. Sci. USA, 106: 9109-9114.

Meyer, Y., W. Siala, T. Bashandy, C. Riondet, F. Vignols and J. P. Reichheld (2008). Glutaredoxins and thioredoxins in plants. Biochim. Biophys. Acta, 1783: 589-600.

Miki, D., R. Itoh and K. Shimamoto (2005). RNA silencing of single and multiple members in a gene family of rice. Plant Physiol., 138: 1903-1913.

Montrichard, F., F. Alkhalfioui, H. Yano, W. H. Vensel, W. J. Hurkman and B. B. Buchanan (2009). Thioredoxin targets in plants: The first 30 years. J. Proteomics, 72: 452-474.

Reichheld, J. P., E. Meyer, M. Khafif, G. Bonnard and Y. Meyer (2005). AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana. FEBS Lett., 579: 337-342.

Reichheld, J. P., M. Khafif, C. Riondet, M. Droux, G. Bonnard and Y. Meyer (2007). Inactivation of thioredoxin reductases reveals a complex interplay between thioredoxin and glutathione pathways in Arabidopsis development. Plant Cell, 19: 1851-1865.

Rouhier, N., D. Cerveau, J. Couturier, J. P. Reichheld and P. Rey (2015). Involvement of thiol-based mechanisms in plant development. BBA-General Subjects, 1850: 1479-1496.

Rouhier, N., S. D. Lemaire and J. Jacquot (2008). The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu. Rev. Plant Biol., 59: 43-66.

Travella, S., T. E. Klimm and B. Keller (2006). RNA Interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiol., 142: 6-20.

Vernoux, T., R. C. Wilson, K. A. Seeley, J. P. Reichheld, S. Muroy and S. Brown, S. C. Maughan, C. S. Cobbett, M. Van Montagu, D. Inzé, M. J. May and Z. R. Sung (2000). The root meristemless1/cadmium sensitive2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell, 12: 97-110.

Wang, T., L. M. Iyer, R. Pancholy, X. Shi and T. C. Hall (2005). Assessment of penetrance and expressivity of RNAi-mediated silencing of the Arabidopsis phytoene desaturase gene. New Phytol., 167: 751-760.

Xing, S., M. G. Rosso and S. Zachgo (2005). ROXY1, a member of the plant glutaredoxin family, is required for petal development in Arabidopsis thaliana. Development, 132: 1555-1565.


  • There are currently no refbacks.

Copyright (c) 2017 Egyptian Journal of Genetics And Cytology

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.