DETERMINATION AND QUANTIFICATION OF SALT STRESS RELATED GENES IN FABA BEAN (Vicia faba)

Authors

  • Z. M. H. EL HUSSEINI Faculty of Biotechnology, October University for Modern Sciences and Arts, October City, Egypt
  • HALA F. WILLIAM Faculty of Biotechnology, October University for Modern Sciences and Arts, October City, Egypt
  • O. S. HASSAN Faculty of Biotechnology, October University for Modern Sciences and Arts, October City, Egypt

Abstract

Salt stress is one of the major environmental factor that affecting plant growth and development. High salt content in the soil causes accumulated stress to the cultivated plants in some areas. Plants may be modified genetically to tolerate these effects that lead to some physiological and morphological modification too (Shanon, 1986; Fisher and Turner, 1978). These interacted changes and modifications are not that simple and a lot of response pathways are required to overcome the unfavorable conditions (Neumann, 1997; Yao, 1998; Hasegewa et al., 2000; Munns, 2002). In salty habitat, some plants tolerate these effects and grow in full capacity. These plants have a unique genetic profile tolerating the crucial environment.
Bad drainage and high temperature are affecting the agricultural lands that lead to accumulation of salt in the soil (Zhu et al., 2005). These problems are common in most of eastern and southern Mediterranean Sea countries including Syria, Lebanon, Jordan, Egypt, Libya, Tunisia, Algeria and Morocco. In Egypt, bad drainage has bad environmental impacts in the north of Nile delta and the west north coast (FAO, 2005).

References

Bandehagh, A., G. H. Salekdeh, M. Toorchi, A. Mohammadi and S. Komatsu (2011). Comparative proteomic analysis of canola leaves under salinity stress. Proteomics, 11: 1965-1975.

Cosgrove, J. D. (2000). Loosening of plant cell walls by expansins. Nature, 407: 321-326.

Cramer, G. R. (2010). Abiotic stress & plant responses from the whole vine to the genes. Aust. J. Grape Wine Res., 16: 86-93.

FAO (2005). Irrigation in Africa in figures: AQUASTAT Survey Box1 "Salinization and drainage in the Nile Delta".

Fisher, R. A. and N. C. Turner (1978). Plant productivity, in arid and semi arid zones. Ann. Rev. Plant Physiol., 29: 897-912.

Ha, E., B. Ikhajiagba, J. F. Bamidele and E. Ogicodia (2008). Salinity effects on young healthy seedling of Kyllingia peruviana collected from Escravos, Delta state. Global J. Environ. Res., 2: 74-88.

Hasegewa, P. M., R. A. Bressan, J. K. Zhu and H. J. Bohnert (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Mol. Biol., 51: 463-499.

Joshi, A., H. Q. Dang, N. Vaid and N. Tuteja (2009). Isolation of high salinity stress tolerant genes from Pisum sativum by random overex-pression in Escherichia coli and their functional validation. Plant Signaling & Behavior, 4: 400-412.

Kapoor, K. and A. Srivastava (2010). Assessment of salinity tolerance of Vinga mungo var. Pu-19 using ex vitro and in vitro methods. Asian J. Biotechnol., 2: 73-85.

Kende, H., K. Bradford, D. Brummell, H. T. Cho, D. Cosgrove, A. Fleming, C. Gehring, Y. Lee, S. McQueen-Mason, J. Rose and L. Voesenek, (2004). Nomenclature for members of the expansin superfamily of genes and proteins. Plant Molecular Biology, 55: 311-314.

Kosová, K., P. Vítámvás, M. O. Urban, M. Klíma, A. Roy and I. T. Prášil (2015). Biological networks underlying abiotic stress tolerance in temperate cropsa proteomic perspective. Int. J. Mol. Sci., 16: 20913-20942.

Liu, X. and Wm. Vance Baird (2004). Identification of a novel gene, HAABRC5, from Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid. Am. J. Bot., 91: 184-191.

McQueen-Mason, S., D. M. Durachko and D. J. Cosgrove (1992). Two endogenous proteins that induce cell wall extension in plants. The Plant Cell, 4: 1425-1433.

Memon, S. A., X. Hou and L. J. Wang (2010). Morphological analysis of salt stress response of pak Choi. EJEAFChe, 9: 248-254.

Molassiotis, A. and V. Fotopoulos. (2011). Oxidative and nitrosative signaling in plants: Two branches in the same tree?. Plant Signaling & Behavior, 6: 210-214.

Molestina, R. E. and A. P. Sinai (2005). Host and parasite-derived IKK activities direct distinct temporal phases of NF-B activation and target gene expression following Toxoplasma gondii infection. J. Cell Sci., 118: 5785-5796.

Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environ., 25: 239-250.

Neumann, P. (1997). Salinity resistance and plant growth revisited. Plant Cell Environ., 20: 1193-1198.

Abdul Qados, Amira. M. S. (2011). Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.). J. Saudi Society of Agri Sci., 10: 7-15.

Reed, I. J. and H. Muench (1938). A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol., 27: 493-497.

Rui, L., S. Wei, C. Muxiang, J. Cheng-jun, W. Min and Y Boping (2009). Leaf anatomical changes of Burguiera gymnorrhiza seedlings under salt stress. J. Trop. Subtrop. Bot., 17: 169-175.

Sarhadi, E., S. Mahfoozi, S. A. Hosseini, and G. H. Salekdeh (2010) Cold acclimation proteome analysis reveals close link between the up-regulation of low-temperature associated proteins and vernalization fulfillment. J. Proteome Res., 9: 5658-5667.

Shanon, M. C. (1986). New insights in plant breeding efforts for improved salt tolerance. Hort. Technol., 6: 96-99.

Skirycz A. and D. Inze (2010). More from less: plant growth under limited water. Curr. Opin. Biotechnol., 21: 197-203.

St-Sauveur, G. V., S. Soucek, A. H. Cor-bett and F. Bachand (2013). Poly(A) tail-mediated gene regulation by opposing roles of nab2 and pab2 nuclear poly(A)-binding proteins in pre-mRNA decay. Molecular and Cellular Biology, 33: 4718-4731.

Taffouo, V. D., J. K. Kouamou, L. M. T. Ngalangue, B. A. N. Ndjeudji and A. Akoa (2009). Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna ungiuculata L., walp) cultivars. Int. J. Bot., 5: 135-143.

Taffouo, V. D., O. F. Wamba, E. Yombi, G. V. Nono and A. Akoe (2010). Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranean (L.) verdc.) landraces grown under saline conditions. Int. J. Bot., 6: 53-58.

Thalooth, A. T., M. M. Tawfik and M. H. Mohamed (2006). A comparative study on the effect of foliar application of zinc, potassium and magnesium on growth, yield and some chemical constituents of mungbean plants grown under water stress conditions. World J. of Agric. Sci., 2: 37-46.

Vincent, D., A. Ergul, M. C. Bohlman, E. A. R. Tattersall, R. L. Tillett, M. D. Wheatley, R. Woolsey, D. R. Quilici, J. Joets, K. Schlauch, et al. (2007). Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J. Exp. Bot., 58: 1873-1892.

Wang, M. C., Z. Y. Peng, C. L. Li, F. Li, C. Liu and G. M. Xia (2008). Proteomic analysis on high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics, 8: 1470-1489.

Yao, A. R. (1998). Molecular biology of salt tolerance in the context of whole plant physiology. J. Exp. Bot., 49: 915-929.

Yilmaz, H. and A. Kina (2008). The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananassa L.). Afr. J. Biotechnol., 7: 3299-3305.

Zhu, J. K., R. A. Bressan, P. M. Hasegawa, J. M. Pardo and H. J. Bohnert (2005). Salt and crops: salinity tolerance. News CAST: News from the Council for Agricultural Science and Technology, 32: 13-16.

Downloads

Published

2016-07-14

Issue

Section

Articles