ANALYSIS OF GENE EXPRESSIONS ASSOCIATED WITH INCREASED ALLELOPATHY IN RICE (Oryza sativa L.) UNDER LOW NITROGEN TREATMENT

Authors

  • M. E. EL-DENARY Department of Genetics, Faculty of Agriculture, Tanta University, Egypt
  • E. A. ELSHAMEY Rice Research & Training Center, Agricultural Research Center, Egypt

Abstract

Our previous studies showed that allelopathic activity and momilactone B concentration in rice seedlings were increased (6.9 times) in the presence of barnyardgrass seedlings. In this study we attempt to demonstrate the response of rice to the grass and Upregulation of the putative genes that encode phenyl-alanine ammonialyase (PAL), O-methyltransferase, triosephosphate-isomerase, and cytochrome P450, which are involved in phenolic allelochemicals synthesis. Suppression subtractive hybridization (SSH) technique was used in this study to investigate the up-regulate expression of genes in Rikuto Norin22 exposed to low N levels and cocultured with/without barnyardgrass in hydroponics. PAL is the first key enzyme in phenylpropanoid metabolism that can be regulated by various biotic and abiotic factors to different extents depending on different plant species and P450 is directly involved in the formation of pcoumaric acid. Rice genotypes, Giza182 like accession Rikuto Norin22 has strong allelopathic activity. In addition, our studies indicate that the accessions Giza182 is restorer line (data is not shown). So, we recommend using accession Giza182 as parental line in producing hybrid rice that has high yield and strong allelopathy like the hybrid (IR69625A x Giza182).

References

Anterola, A. M., J. H. Jeon, L. B. Davin and N. G. Lewis (2002). Transcriptional control of monolignol biosynthesis in Pinustaeda: factors affecting monolignol ratios and carbon allocationin phenylpropanoid metabolism. J. Biol. Chem., 277: 272-280.

Bais, H. P., T. L. Weir, L. G. Perry, S. Gilroy and J. M. Vivanco (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review Plant Biol., 57: 233-266.

Bauwe, H. and U. Kolukisaoglu (2003). Genetic manipulation of glycine-decarboxylation. J. Exp. Bot., 54: 523-535.

Belz, R. G. (2007). Allelopathy in crop/weed interactions update. Pest. Man. Sci., 63: 308-26.

Belz, R. G. and K. Hurle (2004). A novel laboratory screening bioassay for crop seedling allelopathy. J. Chem. Ecol., 30: 175-198.

Bi, H. H., R. Z. Zeng, L. M. Su, M. An and S. H. Luo (2007). Rice allelopathy induced by methyl jasmonate and methyl salicylate. J. Chem. Ecol., 33: 1089-103.

Chang-Xun Fang, Hai-Bin He, Qing-Shui Wang, Long Qiu, Hai-Bin Wang, Yue-E Zhuang, Jun Xiong and Wen-Xiong Lin (2010). Genomic analysis of allelopathic response to low nitrogen and barnyardgrass competition in rice (Oryza sativa L.) Plant Growth Regul., 61: 277-286.

Callaway, R. M. (2002). The detection of neighbors by plants. Trends Plant Sci., 17: 104-105.

Dalton, B. R. (1999). The occurrence and behavior of plant phenolic acids in soil environments Principals and practices in plant ecology: allelochemical interactions. Boca Raton, FL: CRC Press, p. 57-74.

Dayan, F. E. (2006). Factors modulating the levels of the allelochemical sorgolene in Sorghum bicolor. Planta, 224: 339-346.

Diatchenko, L., Y. C. Lau, A. P. Campbell, A. Chenchik and F. Moqadam (1996). Suppression subtractive hybridization: A method for generating 694 J. Chem. Ecol., 34: 688-695.

Einhellig, F. A. (1999). An integrated view of allelochemicals amid multiple stresses. In: Inderjit, Dakshini KMM, Foy CL, editors. Principals and practices in plant ecology: allelochemical interactions. Boca Raton, FL: CRC Press,. p. 47994. Inderjit. Plant phenolics in allelopathy. Bot. Rev., 62: 186-202.

Dixon, R. A., L. Achnine, P. Kota, C. J. Liu, M. S. Reddy and L. J. Wang (2002). The phenylpropanoid pathway and plant defense a-genomics perspective. Mol. Plant Pathol., 3: 371-390.

El Denary, M. E., S. A. Dora, M. I. Abo Yousef and E. A. El-Shamey (2012). Genetic behavior for momilactone B in some lines and their hybrids of rice. J. Agric. Chem. & Biotechn., Mansoura Univ., 3: 295-309.

El-Mowafy, H. F., A. O. Bastawisi, M. I. Abo Youssef and F. U. Zanan (2005). Exploitation of rice heterosis under Egyptian conditions. 10th Nat. Conf. Agron., 7-10 Oct. Suez Canal Univ. Fac. of Env. Agric. Sci, El-Arish.

Fajer, E. D., M. D. Bowers and F. A. Bazzaz (1992). The effect of nutrients and enriched CO2 environments on production of carbon-based allelochemicals in plantago: A test of the carbon/nutrient balance. Am. Nat., 140: 702-723.

Fritz, C., N. Palacios-Rojas, R. Feil and M. Stitt (2006). Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J., 46: 533-548.

Hoagland, D. R. and D. I. Arnon (1933). The water culture method for growing plants without soil. Univ. of California. Berkeley, Agr. Expt. Sta. Circ., 347: 1-39.

Kato-Noguchi, H., T. Ino, N. Sata and S. Yamamura (2002). Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol. Plant, 115: 401-405.

Kato-Noguchi, H., K. Ota and T. Ino (2008). Release of momilactone A and B from rice plants into the rhizosphere and its bioactivities. Allelopathy J., 22: 321-328.

Kato-Noguchi, H. (2009). Stress-induced allolopathic activity and momilactone B in rice. J. Plant Physiol., 59: 153-8.

Kato-Noguchi, H., M. Hasegawa, T. Ino, K. Ota and H. Kujime (2010). Contribution of momilactone A and B to rice allelopathy. J. Plant Physiol., 167: 787-91.

Kim, S. Y., A. V. Madrid, S. T. Park, S. J. Yang and M. Olofsdotter (2005). Evaluation of rice allelopathy inhydroponics. Weed Res., 45: 74-79.

Kim, K. U. and D. H. Shin (2008). Progress and prospect of rice allelopathy research. In: Zeng RS, Mallik AU, Luo SM (eds) Allelopathy in sustainable agriculture and forestry. Springer, New York, p. 189-233.

Kong, C. H., W. Liang, X. Xu, F. Hu, P. Wang and Y. Jiang (2004). Release and activity of allelo-chemicals from allelopathic rice seedlings. J. Agric. Food Chem., 52: 2861-2865.

Macias, F. A., J. M. Molinillo, R. M. Varela and J. G. Galindo (2007). Allelopathy - a natural alternative for weed control. Pest Manag. Sci., 63: 327-348.

Navarez, D. C. and M. Olofsdotter (1996). Relay seeding technique for screening allelopathic rice (Oryza sativa L.). International Weed Control Congress, Copenhagen, Denmark, 25-28 June, 1285-1290.

Okada, A., T. Shimizu, K. Okada, T. Kuzuyama, J. Koga and N. Shibuya (2007). Elicitor induced activation of the methylerythritol phosphate pathway toward phytoalexins biosynthesis in rice. Plant Mol. Biol., 65: 177-87.

Olofsdotter, M., M. Rebulanan, A. Madrid and W. Dali (2002). Why phenolic acids are unlikely primary allelochemicals in rice. J. Chem. Ecol., 28: 229-242.

Palmer, A. G., R. Gao, J. Maresh, W. K. Eribil and D. G. Lynn (2004). Chemical biology of multihost/ pathogen interaction: chemical perception and metabolic complementation. Annual Rev. Phytopathol., 42: 439-64.

Pena-Cortes, H., P. Barrios, F. Dorta, V. Polanco, C. Sunchez and E. Sunchez (2005). Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening. J. Plant Grow. Regul., 23: 246-60.

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nuc. Acids Res., 29: 2002-2007.

Razal, R. A., S. Ellis, S. Singh, N. G. Lewist and G. H. Towers (1996). Nitrogen recycling in phenylpropanoid metabolism. Photochemistry, 41: 31-35.

Seal, A. N., T. Haig and J. E. Pratley (2004). Evaluation of putative allelochemicals in rice roots exudates for their role in the suppression of arrowhead root growth. J. Chem. Ecol., 30: 63-78.

Scheible, W. R., R. Morcuende, T. Czechowski, C. Fritz, D. Osuna, N. Palcios and D. Schindelasch (2004). Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory in structure of Arabidopsis in response to nitrogen. Plant Physiol., 136: 483-499.

Shen, L. and W. Lin (2007). Effects of phosphorus levels on allelopathic potential of rice cocultured with barnyardgrass. Allelopathy J., 19: 393-402.

Sheveleva, E., W. Chmara, H. J. Bohnert and R. G. Jensen (1997). Increased salt and drought tolerance by Dononitol production in transgenic Nicotiana tabacum L. Plant Physiol., 115: 1211-1219.

Song, B., J. Xiong, C. Fang, L. Qiu, R. Lin and Y. Liang (2008). Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. J. Chem. Ecol., 34: 688-695.

Wu, H., J. Pratley, D. Lemerle and T. Haig (1999). Crop cultivars with allelopathic capability. Weed Res., 39: 171-180.

Wysocka-Diller, J. W., Y. Helariutta, H. Fukaki, J. E. Malamy and P. N. Benfey (2000). Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development, 127: 595-603.

Xiong, J., W. X. Lin, J. J. Zhou, M. H. Wu, X. X. Chen and H. Q. He (2005). Studies on biointerference between barnyardgrass and rice accessions at different nitrogen regimes. Proceedings Fourth World Congress on Allelopathy Charles Sturt University, Wagga Wagga, NSW, Australia, 501-504.

Xuan, T. D., I. M. Chung, T. D. Khanh and S. Tawata (2006). Identification of phytotoxic substances from early growth of barnyardgrass (Echinochloa crusgalli) root exudates. J. Chem. Ecol., 32: 895-906.

Yamagata, H., K. Kunimastu, H. Kamasuka, T. Kuramota and T. Iwaski (1998). Rice characterization, localization and changes in developmental and germinating seeds. Biosci. Biotech. Biochem., 62: 978-985.

Downloads

Published

2016-01-23

Issue

Section

Articles