MARKER-ASSISTED SELECTION FOR YIELD AND QUALITY TRAITS IN SOME GRAPE CULTIVARS (*Vitis vinifera* L.)

O. M. SALEH¹², AMIRA H. EL SHONY³, EMAN M. FAHMY³, NADIA M. MANSOUR⁴ AND F. M. ABDEL-TAWAB³

1. National Centre for Radiation Research and Technology (NCRRT), Cairo, Egypt
2. Department of Biotechnology, Faculty of Applied Medical Science, Taif University, Turrabah, KSA
3. Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
4. Horticultural Research Institute, Agricultural Research Center (ARC), Giza, Egypt

Grapes belong to family Vitaceae, which are woody climbers comprising 13 genera and about 700 species worldwide. *Vitis* is the only genus with economic importance and it is divided into two subgenera, *Euvitis* Planch (38 chromosomes) and *Muscadinia* Planch (40 chromosomes). The *Euvitis* species, with hundreds of known cultivars, can be divided into three geographical groups; American group, Asian group and European & middle-Asian group (Olien, 1990; Mullins et al., 1992).

The most widely recognized species is *Vitis vinifera* L., which is grown all over the world, ranked as the only member in the third group and has given rise to thousands of cultivars. It is considered as the major fruit crop in the world, the second fruit crop in production after citrus and the third largest crop by area after citrus and banana.

In Egypt, grape is grown in about 160,000 feddans, which produce about 1.2 million tons with an average of 9-21 tons/feddan (Horticulture Research Institute, ARC, Egypt). Grape is able to grow in a wide range of environments and adapts to different soil types. Research in grapevine genetics is restrained by the lack of genetic stocks, high heterozygosity, inbreeding depression, large space requirements, and the relatively long juvenile period (Reisch, 1998). DNA markers technology offers great promise for plant breeding, allowing molecular breeding via marker-assisted selection (Bergamini et al., 2013) and to study the historical origin and genetic diversity in some genotypes of grape (This et al., 2006). The RAPD markers provided some useful information in studies on genetic diversity and breeding of cowpea through mutations using the irradiation (Badr et al., 2014). RAPD markers, which can quickly detect a large number of genetic polymorphisms, have led to the creation of genetic maps in a number of woody fruit crops including grape (Lodhi et al., 1997). RAPD markers have some limitations, however, including questionable reproducibility of some bands, a requirement for stringent standardization products, and some genomic factors other than heredity, such as repetitive DNA and genome size may account for pattern variation (Bach-
Microsatellite markers (simple sequence repeats or SSRs markers) were widely used in grapevine genetic research for identification of cultivars (Lin and Walker, 1998; Ibanez et al., 2003), parentage analysis, genome mapping and genetic characterization of germplasm (Sefc et al., 1998; 1999). Bergamini et al. (2013) validated the SSRs markers as a 100% effective tool for early negative selection of stenospermocarpy in *Vitis vinifera* L. crosses. Inter simple sequence repeats (ISSRs) is a different microsatellites-based method, which does not need prior knowledge of the genome. ISSRs analysis was used to determine and describe the diversity of several plant groups (Herrera et al., 2002).

ISSRs technique was used to detect genetic characterization in some species such as tomato (Shahlaei et al., 2014), lentil (Lombardi et al., 2014) and apple (Dhyani et al., 2015).

The objectives of this study were to; develop molecular identification for different grape genotypes through DNA analysis, assess the genetic relationships among these genotypes and obtain some molecular genetic markers associated with some important economic traits in grapes.

MATERIALS AND METHODS

1. Materials

Six cultivars and five rootstocks of grapes (*Vitis vinifera* L.) were obtained from Horticulture Department, Faculty of Agriculture, Ain Shams University, Shoubra El-Kheima, Egypt for this study. Their names, origins and trait descriptions, which achieved from net site www.vitis.com, are shown in Table (1). The pictorial presentation of the grape clusters (berries) of the six grape cultivars; Thompson seedless (Banaty), Bezelanaza, Flame, Superior, Early-superior, and Crimson are shown in Fig. (1). Five rootstocks (Harmony, SO4, Rogiri, Freedom, and Poulson) were used, also, in this investigation.

2. Methods

2.1. DNA molecular genetic analysis

2.1.1. Genomic DNA extractions

DNeasy™ Plant Mini Kit (Qiagen Inc., cat. no. 69104) was used for DNA isolation from the leaves of the 11 grape genotypes.

2.1.2. Randomly amplified polymorphic DNA analysis (RAPD)

RAPD reactions were conducted according to the method of Michelmore et al. (1991) using nine random 10-mer primers from Operon Technology (USA). Their codes, sequences and GC% are shown in Table (2). The PCR-amplification method was carried out for 42 cycles as follows: 94°C/4 min (one cycle); 94°C/1 min, 36°C/1 min, 72°C/2 min (40 cycles); 72°C/10 min (one cycle) and 4°C (infinite). PCR products were migrated on agarose (1.2%) according to Sambrook et al. (1989).
2.1.3. Simple sequence repeats (SSRs) analysis

Simple sequence repeats-polymerase chain reaction (SSRs-PCR) was conducted according to Sefc et al. (1999) using seven pairs of primers. Their codes and sequences are shown in Table (2). The PCR-amplification method was carried out in a PCR-programmed for 47 cycles as follows: 94°C/4 min (one cycle); 94°C/1 min 50, 55 or 60°C/1 min, 72°C/2 min (45 cycles); 72°C/10 min (one cycle) and 4°C (infinitive). PCR products were migrated on agarose (4%) according to Sambrook et al. (1989).

2.1.4. Inter-simple sequence repeats (ISSRs) analysis

Inter-SSRs (ISSRs)-technique was used according to Zietkiewicz et al. (1993) using four primers. Table (2) shows the codes of these primers, their sequences and GC%.

The thermal cycler (PCR) program was applied for three main steps as follows: 94°C/4 min (one cycle), 94°C/1 min (40 cycles), 55°C/1 min (40 cycles), 72°C/2 min (40 cycle), 72°C/10 min (one cycle) and 4°C (infinitive). PCR products were migrated on agarose (1.2%) according to Sambrook et al. (1989).

2.1.5. Data analysis

DNA fragments were detected on UV-transilluminator, then photographed with Gel-Documentation 2000, Bio-RadTM apparatus and analyzed by diversity database V.2.1.1. Cluster analysis based on RAPD, SSRs, ISSRs and combined results of RAPD and ISSRs analyses were carried out using UPGMA computer program.

RESULTS AND DISCUSSION

1. Molecular identification of grape cultivars

1.1. Randomly amplified polymorphic DNA-PCR (RAPD-PCR) analysis

Nine arbitrary 10-mer oligonucleotide primers were used to amplify the genomic DNA from the 5 grape cultivars and the 5 rootstocks. The number of total amplified fragments (TFA), polymorphic fragments (PF) for each primer, amplified fragments (AF) and specific marker (SM) for each genotype are shown in Table (4). Primers produced fragments number ranged from 6 for primers; OP-B01 and OP-B13 to 9 fragments for primers; OP-B02, OP-B05, OP-B07, OP-B09, OP-B10 and OP-B11 and 12 fragments for primer; OP-B08. All these data are shown in Fig. (2a-i). All primers exhibited 100% polymorphism except primer Op-B01 which showed 83.3% polymorphism that was useful in grapes identification which agreed with Stavrakakis et al. (1997).

1.1.1. Genotype-specific markers based on RAPD-PCR technique

Freedom rootstock (Nematode resistant) showed one positive marker at molecular size (MS) of 300 bp with pri-
mer OP-B09 and one negative specific marker at MS of 700 bp with primer OP-B01 (Table 4). Bezelanza cultivar (sweet flavour and early season grape) exhibited two positive specific markers at MS of 950 and 876 bp with primer OP-B05. Banaty cultivar (sweet juicy flavour) showed three positive markers at MS of 1178, 100 and 1049 bp with primers OP-B07, OP-B09 and OP-B11, respectively, and one negative marker at MS of 500 bp with primer OP-B09. Flame cultivar (sweet grape with deep-red colour and early season cultivar) exhibited one negative specific marker at MS of 500 bp with primer OP-B05. Rogiri rootstock (drought tolerant and resistant to phylloxera) exhibited one positive specific marker at MS of 1042 bp with primer OP-B09 and two positive specific markers at MS of 170 and 100 bp with primer OP-B10. Poulson rootstock (drought tolerant, Nematode and phylloxera resistance) showed one positive marker with primer OP-B02.

1.1.2. Genetic similarity and cluster analysis based on RAPD fragments

The results of cluster analysis (similarity indices) based on RAPD using UPGMA computer analyses are shown in Table (3). The highest similarity value (79.5%) was recorded between Crimson and Harmony and between Rogiri and Harmony, while the lowest similarity value (44.9%) was recorded between Bezelanza and Rogiri. A dendrogram for the genetic relationships among the 10 grape genotypes are shown in Fig. (5). The ten genotypes were separated into two clusters; cluster 1 included Banaty, Bezelanza, Flame and Early-superior and cluster 2 comprised the rest of the genotypes.

Ye et al. (1998) showed that RAPD analysis can be used for grape cultivar identification and for discrimination among phenotypically similar grape cultivars. Miaja et al. (2004) found that RAPD analysis gave fast and reliable results even on young material. On the other hand, Moreavcova et al. (2004) reported that it was impossible to distinguish between some grape varieties by RAPD method.

1.2. Simple sequence repeats (SSRs)

SSRs have become the technique of choice to identify different genotypes and to elucidate molecular markers in plant systems due to their abundance, high degree of polymorphism and amenability (Carreno et al., 2004). Seven primer pairs were used in this study to identify the 11 grape genotypes.

Amplification of SSRs primers showed different numbers of fragments (Table 4) ranged from two fragments (primer ZAG 29, Fig. 3b), 3 fragments (primer ZAG 15, Fig. 3f), 4 fragments (primer ZAG 93, Fig. 3c), 5 fragments (primers ZAG 67 and ZAG 112, Figs. 3d & e, respectively), 8 fragments (primer ZAG 25, Fig. 3g) and 10 fragments (primer ZAG 7, Fig. 3a)

1.2.1. Genotype-specific-markers

The results of amplified fragments using SSRs method for the 11 grape geno-
types are shown in Table (4). Primers produced a number of fragments ranged from 2 for primer ZAG29 to 10 for primer ZAG7. Crimson cultivar showed some specific markers; seven of them as positive markers at different molecular sizes and one as a negative marker at MS of 73 bp with primer ZAG7. This cultivar also showed 2 positive markers at MS of 300, 352 bp with primers ZAG67 and ZAG25, respectively. Flame cultivar exhibited one positive specific marker at MS of 76 bp with primer ZAG112, while primer ZAG15 detected one positive marker with MS of 300 bp and one negative marker at MS of 290 bp. Banaty cultivar showed one positive specific marker with MS of 235 bp with primer ZAG67. SO4 rootstock recorded one negative marker at MS of 178 bp with primer ZAG93. Rogiri rootstock exhibited two specific markers, one was positive at MS of 290 bp and the other was negative at MS of 280 bp using primer ZAG29. Freedom rootstock, recorded positive marker at MS of 186 bp with primer ZAG67.

1.2.2. Genetic similarity and cluster analysis based on SSRs fragments

The SSRs data were used to estimate the genetic similarity among the 11 grape genotypes (Table 3). The closest relationship was recorded between cultivars Early-superior and Bezelanza (similarity index of 94.6%). On the other hand, the lowest similarity was observed between Crimson and Freedom (40.5%). The dendrogram based on SSRs similarity matrices (Fig. 6) separated the 11 grape genotypes into two main clusters. Cultivar Crimson was placed in a separate cluster and the second cluster involved the rest of the genotypes. These genotypes were separated into four sub-clusters; one included Flame alone, the other combined Poulson and Freedom, the third sub-cluster included Harmony, Rogiri and SO4. Bezelanza, Early-superior, Superior and Banaty fell in the fourth sub-cluster.

SSRs analysis for these genotypes indicated that the high polymorphic information content (PIC) of the markers could enable us in the identification of a large number of cultivars with only a few loci, while their distribution over the genome would make them valuable tools for pedigree studies and genetic mapping. This was in agreement with Sefc et al. (1999). Arnold et al. (2002) indicated that characterized SSRs loci can be successfully used in ecological and conservation studies across related species. They postulated that SSRs markers of grapes were likely to provide useful genetic tools for population investigations of selected Vitaceae worldwide. Carreno et al. (2004) studied the degree of genomic similarity among some grape cultivars and found high biodiversity among cultivars and for the wild individuals. Merdinoglu et al. (2005) emphasized the potential of SSRs markers in a number of studies and for the identification and discrimination of cultivars and rootstocks, pedigree reconstruction, genetic diversity of Vitis species and for genetic mapping.
1.3. ISSRs amplification analysis

Amplification of four ISSRs primers showed different numbers of fragments (Table 4) ranged from 8 fragments (primer HB 15, Fig. 4b), 10 fragments (primer 17898A, Fig. 4c), 13 fragments (primer HB 10, Fig. 4a) and 14 fragments (primer 17898 B, Fig. 4d).

1.3.1. Genotype-specific markers

The results of the amplified fragments using ISSRs method for the ten grape genotypes showed some specific markers. The four primers produced fragments wit8 for primer HB15 to 14 for primer 17898B (Table 4). Flame cultivar showed one positive marker at MS of 547 bp with primer HB10, Rogiri rootstock exhibited two positive markers at MS of 907 and 373 bp with primer HB10, one at MS of 580 bp with primer HB15 and one at MS of 981 bp with primer 17898B. Freedom rootstock gave a positive marker at MS of 373 bp using primer HB10. Bezelanza cultivar recorded a positive marker at MS of 2306 bp with primer 17898A. SO4 rootstock exhibited three positive markers at MS of 3235, 2178 and 144 bp with primer 17898B. Crimson cultivar, also showed one positive marker at MS of 268 bp using primer HB15.

1.3.2. Genetic similarity and cluster analysis based on ISSRs fragments

The ISSRs data were used to estimate the genetic similarity among the ten grape genotypes (Table 3). The genetic similarity matrices ranged from 40.0% to 75.6%. The closest relationship was recorded between cultivars Banaty and Early-superior (75.6%). On the other hand, the lowest similarity was observed between Bezelanza cultivar and Rogiri rootstock (40.0%).

As shown in Fig. (7), the dendrogram based on ISSRs similarity indices separated the ten grape genotypes into two main clusters. The first cluster combined 3 genotypes into two sub-clusters; Harmony and Poulson together and Freedom alone. The second cluster was divided into two sub-clusters, the first one comprised Crimson and SO4 together and Rogiri alone. The second sub-cluster combined Banaty and Early-superior together, while each of Flame or Bezelanza genotypes were separated into different sub-clusters. This wide range of identifying the 10 grape genotypes confirmed the efficiency of ISSRs markers as agreed with Herrera et al. (2002) who suggested that ISSRs would be more suited than RAPD for use on a wider range of cultivars. Essadki et al. (2006) found that ISSRs corresponds to dominant genetic markers and a specific phenotype may reflect the occurrence of several genotypes which can’t be distinguished directly. Pasquale et al. (2006) confirmed the high potential of ISSRs over RAPD techniques for fingerprinting closely related accessions.

1.4. Combined identification based on RAPD and ISSRs analyses

Cluster analysis based on both RAPD and ISSRs analyses was carried out
using UPGMA computer program as shown for similarity indices (Table 3) and
the dendrogram of genetic distances (Fig. 8). The highest similarity index was re-
corded between Harmony and Poulson rootstocks (75.6%), while the lowest
(43.1%) was observed between Bezelanza cultivar and Rogiri rootstock.

A dendrogram for the genetic relationships among the ten genotypes across
the two technique results was carried out in Fig. (8). The ten genotypes were sepa-
rated into two clusters; the first cluster was divided into two sub-clusters; the first
sub-cluster contained the two cultivars Banaty and Early-superior and the second
one combined Bezelanza and Flame cultivars.

The second cluster included the rest of the other genotypes which was
further subdivided into two sub-clusters; Freedom alone in the first sub-cluster, the
second sub-cluster contained each of SO4 or Rogiri alone, while Crimson, Poulson
and Harmony were present in the third sub-subcluster. It could be concluded that
among Vitis genotypes a combination of RAPD and ISSRs could be more reliable
for the rapid identification of grapevine varieties (Herrera et al., 2002).

1.5. Trait-specific markers

Based on the morphological and yield-related traits, it was possible to ob-
tain some satisfactory associations between some of these important traits and
RAPD, SSRs and ISSRs markers as shown in Table (5).

From the two classes of markers; RAPD and ISSRs used in grape iden-
tification, combined systems are more preferable for the genotypes identification
used in this study as a reliable approach than dependence on one system only. Mo-
elcular fingerprinting of grape cultivars would help for protection of the breeder’s
rights and provide a safeguard against commercial frauds. Several investigations
advocated the combined analysis concept as advantageous to single systems
(Brighurst et al., 1981; Abdel-Tawab et al., 2003 and 2004). In addition, our re-
sults could contribute to the assessment of genetic relationship and biodiversity
among these cultivars, which agreed with Choudhary et al. (2014) who used 10
ISSR primers to study the genetic variability of four grape cultivars and grouped
them into two major clusters at 51 percent similarity. This would help in selecting
widely divergent cultivars for the development of crosses for the improvement of
grape yield and quality traits. Moreover, molecular markers elucidated in this in-
vestigation, effectively revealed minute differences between very closely-related
genotypes which otherwise could not be detected at the morphological level. This
was particularly evident in Superior vs. Early-superior genotypes. Morphological
discrimination between these two cultivars in particular represents a major problem
for grape growers who like to have early identification of Early-superior, and mo-
lecular identification provides a reliable tool to realize this far-reaching economic
objective.
The objectives of this study were to develop molecular characterization for 11 grape genotypes and rootstocks using RAPD, SSRs and ISSRs analyses and to elucidate some molecular markers associated with some quality and yield-related traits.

RAPD analysis for the ten genotypes utilizing nine random 10-mer primers exhibited a total number of 78 fragments. All primers exhibited high levels of polymorphism (100%) and the number of bands for each primer ranged from 5 to 12. The dendrogram based on RAPD-PCR analysis divided the ten genotypes into two main clusters; cluster 1 included four genotypes and cluster 2 comprised the rest of the genotypes. Cultivar Crimson and rootstock Harmony and also rootstocks Harmony and Rogiri were closely related (79.5%), while Bezelanza and Rogiri were remotely related (44.9%).

SSRs analysis for the 11 genotypes utilizing 7 primer pairs showed a total number of 37 bands and the total number of bands for each primer ranged from 2 to 10. Genetic similarity among the 11 grape genotypes showed that the closest relationship was recorded between Early-superior and Bezelanza (similarity matrix 94.6%), on the other hand, the lowest similarity was observed between Crimson and Freedom (40.5%).

ISSRs analysis for ten genotypes utilizing 4 primers which exhibited a total number of 45 bands and the number of bands for each primer ranged from 8 to 14. The genetic similarity among the ten grape genotypes based on ISSRs indicated a closest relationship between Banaty and Early-superior cultivars (75.6%), the lowest similarity was observed between Bezelanza cultivar and Rogiri rootstock (40.0%)

The combined data of RAPD-PCR and ISSRs-PCR showed that the genetic similarity matrix between Harmony and Poulson rootstocks was 75.6%, while the lowest similarity index (43.1%) was observed between Bezelanza cultivar and Rogiri rootstock.

In general, the molecular genetic studies of the 11 grape genotypes proved to be effective tools for the identification of these genotypes. In addition, such studies provided some molecular markers associated with some economically important traits in grape vine.

REFERENCES

Table (1): Code number, names of the 11 grape genotypes (six cultivars and five rootstocks), their origins and genotype specific traits.

<table>
<thead>
<tr>
<th>Code number</th>
<th>Genotype names</th>
<th>Origin</th>
<th>Specific traits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cultivars)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Bezelanza</td>
<td>Local</td>
<td>Light green color, large elongated berries, very sweet flavor and an early season</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cultivar.</td>
</tr>
<tr>
<td>2</td>
<td>Thompson seedless (Banaty)</td>
<td>Local</td>
<td>Light green color, oblong berries, sweet juicy flavor and medium season cultivar.</td>
</tr>
<tr>
<td>3</td>
<td>Flame</td>
<td>Foreign</td>
<td>Round, crunchy, sweet grape with a deep-red color and early season cultivar.</td>
</tr>
<tr>
<td>4</td>
<td>Superior</td>
<td>Foreign</td>
<td>Clear green color. The bunches are filled with berries, crisp texture refreshing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ly sweet taste and early season cultivar.</td>
</tr>
<tr>
<td>5</td>
<td>Early-superior</td>
<td>Foreign</td>
<td>Large seedless berries, clear green color, crisp texture, refreshingly sweet</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>taste and very early season cultivar.</td>
</tr>
<tr>
<td>6</td>
<td>Crimson</td>
<td>Foreign</td>
<td>Red and crisp berries, sweetly tart, spicy flavor and late season cultivar.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rootstock</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Harmony</td>
<td>Unknown</td>
<td>Drought tolerant, Nematode resistance with medium resistance to phylloxera.</td>
</tr>
<tr>
<td>8</td>
<td>SO4</td>
<td>V. berlandieri x V. riparia</td>
<td>Resistance to Nematode and phylloxera</td>
</tr>
<tr>
<td>9</td>
<td>Rogiri</td>
<td>V. berlandieri x V. rupestris</td>
<td>Drought tolerant, Resistance to phylloxera with medium resistance to Nematode</td>
</tr>
<tr>
<td>10</td>
<td>Freedom</td>
<td>1613 x Dog Ridge</td>
<td>It is a strong rootstock with Nematode resistant.</td>
</tr>
<tr>
<td>11</td>
<td>Poulson</td>
<td></td>
<td>Drought tolerant, Resistance to Nematode and phylloxera</td>
</tr>
</tbody>
</table>
Table (2): Primer names, their sequences and GC% used for RAPD, SSRs and ISSRs analyses.

<table>
<thead>
<tr>
<th>RAPD</th>
<th>Primer name</th>
<th>Sequences (5’→3’)</th>
<th>GC %</th>
<th>Primer name</th>
<th>Sequences (5’→3’)</th>
<th>GC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>OP-B01</td>
<td>GTTTTCGCTCC</td>
<td>60%</td>
<td>OP-B09</td>
<td>TGGGGGACTC</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>OP-B02</td>
<td>TGATCCCTGG</td>
<td>60%</td>
<td>OP-B10</td>
<td>CTGCTGGGAC</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>OP-B05</td>
<td>TGCGCCCTTC</td>
<td>70%</td>
<td>OP-B11</td>
<td>GTAGACCGGT</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>OP-B07</td>
<td>GGTGACGCAG</td>
<td>70%</td>
<td>OP-B13</td>
<td>TTCCCCCGCT</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>OP-B08</td>
<td>GTCCACACGG</td>
<td>70%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSRs</th>
<th>Primer code</th>
<th>Forward primer sequence (5’→3’)</th>
<th>Reverse primer sequence (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAG 7</td>
<td>GTGGTAGTGGGTGTGAACGGAGTG</td>
<td>AACAGCATGACATCCACCTCAACGG</td>
<td></td>
</tr>
<tr>
<td>ZAG 15</td>
<td>GGATTTTGCTGTAGTTTTGTGAAG</td>
<td>ATCTCAAGCTGGGCTTATTACAAT</td>
<td></td>
</tr>
<tr>
<td>ZAG 25</td>
<td>CTCCACTTCACATCACATGGCATGC</td>
<td>CGGCAACATTTACTCATCTCTCCC</td>
<td></td>
</tr>
<tr>
<td>ZAG 29</td>
<td>ATAAACCGAGAAAGTTATCAAGCC</td>
<td>ACCAAATTGACCTATCTTTTATGCTG</td>
<td></td>
</tr>
<tr>
<td>ZAG 67</td>
<td>ACCTGCCCCGACTCTCTCTTGTATGC</td>
<td>TCCTGCCGGGATAACCAGCTATG</td>
<td></td>
</tr>
<tr>
<td>ZAG 93</td>
<td>TATGGAGGGACCGAGGTGGGCTAG</td>
<td>GCACTCTTTCGACGTAAAACAAAGCC</td>
<td></td>
</tr>
<tr>
<td>ZAG112</td>
<td>CGTTTAAGCCAGCTGAATCTTGGG</td>
<td>TGGCTCCATACTGCTTCACGGAC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISSRs</th>
<th>Primer</th>
<th>Sequences (5’→3’)</th>
<th>GC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>17898A</td>
<td>CACACACACACAAC</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>17898B</td>
<td>CACACACACACAGT</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>HB10</td>
<td>GAGAGAGAGAGACC</td>
<td>57%</td>
<td></td>
</tr>
<tr>
<td>HB15</td>
<td>GTGGTGGTGGGC</td>
<td>73%</td>
<td></td>
</tr>
</tbody>
</table>
Table (3): Similarity indices among the 10 grape genotypes based on RAPD, SSRs, ISSRs and combined RAPD and ISSRs data analyses.

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Bezelanza</th>
<th>Flame</th>
<th>Early-superior</th>
<th>Crimson</th>
<th>Harmony</th>
<th>SO4</th>
<th>Rogiri</th>
<th>Poulson</th>
<th>Freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Banaty</td>
<td>0.500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame</td>
<td>0.628</td>
<td>0.718</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early-superior</td>
<td>0.615</td>
<td>0.654</td>
<td>0.679</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crimson</td>
<td>0.487</td>
<td>0.551</td>
<td>0.474</td>
<td>0.590</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmony</td>
<td>0.513</td>
<td>0.474</td>
<td>0.474</td>
<td>0.667</td>
<td>0.795</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO4</td>
<td>0.526</td>
<td>0.538</td>
<td>0.513</td>
<td>0.577</td>
<td>0.679</td>
<td>0.679</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogiri</td>
<td>0.487</td>
<td>0.449</td>
<td>0.500</td>
<td>0.667</td>
<td>0.795</td>
<td>0.603</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poulson</td>
<td>0.462</td>
<td>0.526</td>
<td>0.526</td>
<td>0.590</td>
<td>0.744</td>
<td>0.769</td>
<td>0.628</td>
<td>0.692</td>
<td></td>
</tr>
<tr>
<td>Freedom</td>
<td>0.462</td>
<td>0.500</td>
<td>0.474</td>
<td>0.487</td>
<td>0.641</td>
<td>0.641</td>
<td>0.577</td>
<td>0.615</td>
<td>0.692</td>
</tr>
<tr>
<td>SSRs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotypes</td>
<td>Banaty</td>
<td></td>
<td>Flame</td>
<td>Early-superior</td>
<td>Crimson</td>
<td>Harmony</td>
<td>SO4</td>
<td>Rogiri</td>
<td>Poulson</td>
</tr>
<tr>
<td>Banaty</td>
<td>0.919</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame</td>
<td>0.703</td>
<td>0.730</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early-superior</td>
<td>0.892</td>
<td>0.919</td>
<td>0.757</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crimson</td>
<td>0.432</td>
<td>0.459</td>
<td>0.459</td>
<td>0.486</td>
<td>0.514</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmony</td>
<td>0.703</td>
<td>0.784</td>
<td>0.676</td>
<td>0.703</td>
<td>0.784</td>
<td>0.568</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO4</td>
<td>0.784</td>
<td>0.811</td>
<td>0.703</td>
<td>0.784</td>
<td>0.757</td>
<td>0.432</td>
<td>0.811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogiri</td>
<td>0.649</td>
<td>0.730</td>
<td>0.730</td>
<td>0.703</td>
<td>0.676</td>
<td>0.459</td>
<td>0.838</td>
<td>0.811</td>
<td></td>
</tr>
<tr>
<td>Poulson</td>
<td>0.730</td>
<td>0.757</td>
<td>0.649</td>
<td>0.784</td>
<td>0.757</td>
<td>0.541</td>
<td>0.757</td>
<td>0.784</td>
<td>0.703</td>
</tr>
<tr>
<td>Freedom</td>
<td>0.703</td>
<td>0.676</td>
<td>0.676</td>
<td>0.757</td>
<td>0.730</td>
<td>0.405</td>
<td>0.730</td>
<td>0.757</td>
<td>0.676</td>
</tr>
<tr>
<td>ISSRs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genotypes</td>
<td>Banaty</td>
<td></td>
<td>Flame</td>
<td>Early-superior</td>
<td>Crimson</td>
<td>Harmony</td>
<td>SO4</td>
<td>Rogiri</td>
<td>Poulson</td>
</tr>
<tr>
<td>Banaty</td>
<td>0.711</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame</td>
<td>0.733</td>
<td>0.622</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early-superior</td>
<td>0.756</td>
<td>0.600</td>
<td>0.667</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crimson</td>
<td>0.733</td>
<td>0.578</td>
<td>0.644</td>
<td>0.578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmony</td>
<td>0.622</td>
<td>0.600</td>
<td>0.578</td>
<td>0.556</td>
<td>0.578</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO4</td>
<td>0.711</td>
<td>0.467</td>
<td>0.622</td>
<td>0.556</td>
<td>0.711</td>
<td>0.711</td>
<td>0.511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogiri</td>
<td>0.644</td>
<td>0.467</td>
<td>0.622</td>
<td>0.644</td>
<td>0.533</td>
<td>0.622</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poulson</td>
<td>0.533</td>
<td>0.511</td>
<td>0.578</td>
<td>0.711</td>
<td>0.733</td>
<td>0.644</td>
<td>0.578</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freedom</td>
<td>0.578</td>
<td>0.600</td>
<td>0.444</td>
<td>0.422</td>
<td>0.533</td>
<td>0.689</td>
<td>0.556</td>
<td>0.533</td>
<td>0.600</td>
</tr>
</tbody>
</table>
Table (3): Continued

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Banaty</th>
<th>Bezelanza</th>
<th>Flame</th>
<th>Early-superior</th>
<th>Crimson</th>
<th>Harmony</th>
<th>SO4</th>
<th>Rogiri</th>
<th>Poulson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezelanza</td>
<td>0.577</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flame</td>
<td>0.667</td>
<td>0.683</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early-superior</td>
<td>0.667</td>
<td>0.634</td>
<td>0.675</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crimson</td>
<td>0.577</td>
<td>0.561</td>
<td>0.537</td>
<td>0.585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmony</td>
<td>0.553</td>
<td>0.520</td>
<td>0.512</td>
<td>0.626</td>
<td>0.715</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO4</td>
<td>0.593</td>
<td>0.512</td>
<td>0.553</td>
<td>0.569</td>
<td>0.691</td>
<td>0.618</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rogiri</td>
<td>0.545</td>
<td>0.488</td>
<td>0.431</td>
<td>0.650</td>
<td>0.642</td>
<td>0.699</td>
<td>0.610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poulson</td>
<td>0.488</td>
<td>0.520</td>
<td>0.545</td>
<td>0.561</td>
<td>0.732</td>
<td>0.756</td>
<td>0.634</td>
<td>0.650</td>
<td></td>
</tr>
<tr>
<td>Freedom</td>
<td>0.504</td>
<td>0.537</td>
<td>0.463</td>
<td>0.463</td>
<td>0.602</td>
<td>0.659</td>
<td>0.569</td>
<td>0.585</td>
<td>0.659</td>
</tr>
</tbody>
</table>
Table (4): Number of amplified fragments and specific markers of the grape genotypes based on RAPD, SSRs and ISSRs.

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Banaty</th>
<th>Bezelanze</th>
<th>Flame</th>
<th>Early superior</th>
<th>Crimson</th>
<th>Harmony</th>
<th>SO4</th>
<th>Regini</th>
<th>Poulsan</th>
<th>Freedom</th>
<th>TSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers code</td>
<td>Primer TAF</td>
<td>PF</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
</tr>
<tr>
<td>OP-B01</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>OP-B02</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>OP-B05</td>
<td>9</td>
<td>9</td>
<td>4</td>
<td>-</td>
<td>8 2(+)</td>
<td>5</td>
<td>1(-)</td>
<td>6</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>OP-B07</td>
<td>9</td>
<td>9</td>
<td>4 1(+)</td>
<td>6</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>OP-B08</td>
<td>12</td>
<td>12</td>
<td>3</td>
<td>7</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td>OP-B09</td>
<td>9</td>
<td>9</td>
<td>4 1(+)</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>OP-B10</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>OP-B11</td>
<td>9</td>
<td>9</td>
<td>3 1(+)</td>
<td>5</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>OP-B13</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>78</td>
<td>77</td>
<td>32</td>
<td>4</td>
<td>43</td>
<td>2</td>
<td>39</td>
<td>1</td>
<td>42</td>
<td>0</td>
<td>38</td>
</tr>
</tbody>
</table>

TAF= Total amplified fragments,
PF= Polymorphic fragment for each primer,
AF= Amplified fragments,
SM= Specific markers including either the presence or absence of a fragment and
TSM= Total number of specific markers.
Table (4): Continued

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>Banaty</th>
<th>Bezelanze</th>
<th>Flame</th>
<th>Superior</th>
<th>Early superior</th>
<th>Crimson</th>
<th>Harmony</th>
<th>SO4</th>
<th>Regiri</th>
<th>Poulson</th>
<th>Freedom</th>
<th>TSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers code</td>
<td>Primer code</td>
<td>TAF</td>
<td>PF</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
</tr>
<tr>
<td>ZAG7</td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>ZAG93</td>
<td>4 4</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>ZAG29</td>
<td>2 2</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ZAG67</td>
<td>5 5</td>
<td>3</td>
<td>(+1)</td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>ZAG112</td>
<td>5 4</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>(+1)</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>ZAG15</td>
<td>3 3</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>(+1)</td>
<td>(-1)</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ZAG25</td>
<td>8 7</td>
<td>4</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>37 35</td>
<td>16</td>
<td>1</td>
<td>17</td>
<td>-</td>
<td>15</td>
<td>3</td>
<td>14</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>23</td>
</tr>
</tbody>
</table>

TAF = Total amplified fragments,
PF = Polymorphic fragment for each primer,
AF = Amplified fragments,
SM = Specific markers including either the presence or absence of a fragment and
TSM = Total number of specific markers.
Table (4): Continued

<table>
<thead>
<tr>
<th>Genotypes</th>
<th>ISSRs</th>
<th>Banaty</th>
<th>Bezelanze</th>
<th>Flame</th>
<th>Early superior</th>
<th>Crimson</th>
<th>Harmony</th>
<th>SO4</th>
<th>Rogiri</th>
<th>Poulson</th>
<th>Freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primers code</td>
<td>Primer TAF</td>
<td>PF</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
<td>SM</td>
<td>AF</td>
</tr>
<tr>
<td>HB10</td>
<td>13</td>
<td>13</td>
<td>5</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>7</td>
<td>(1+)</td>
<td>5</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>HB15</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>17898A</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>-</td>
<td>8</td>
<td>(1+)</td>
<td>7</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>17898B</td>
<td>14</td>
<td>14</td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>45</td>
<td>14</td>
<td>-</td>
<td>19</td>
<td>1</td>
<td>22</td>
<td>1</td>
<td>13</td>
<td>-</td>
<td>18</td>
</tr>
</tbody>
</table>

TAF= Total amplified fragments, PF= Polymorphic fragment for each primer, AF= Amplified fragments, SM= Specific markers including either the presence or absence of a fragment and TSM= Total number of specific markers.
Table (5): Trait specific markers based on RAPD, SSRs and ISSRs analyses for grape genotypes.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Primers</th>
<th>MS of specific markers (bp)</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RAPD</td>
<td>SSRs</td>
<td>ISSRs</td>
</tr>
<tr>
<td>Nematode resistance</td>
<td>OP-B01</td>
<td>ZAG67</td>
<td>HB10</td>
</tr>
<tr>
<td></td>
<td>OP-B09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very sweet flavor and early season cultivar</td>
<td>OP-B05</td>
<td></td>
<td>17898A</td>
</tr>
<tr>
<td></td>
<td>OP-B05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet flavor, deep red colour and early season</td>
<td>OP-B05</td>
<td>ZAG15</td>
<td>HB10</td>
</tr>
<tr>
<td>cultivar</td>
<td></td>
<td>ZAG15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZAG112</td>
<td></td>
</tr>
<tr>
<td>Sweet juicy flavor, and medium season traits</td>
<td>OP-B07</td>
<td>ZAG67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OP-B11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OP-B09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OP-B09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drought tolerant and resistance to phylloxera</td>
<td>OP-B09</td>
<td>ZAG29</td>
<td>HB10</td>
</tr>
<tr>
<td></td>
<td>OP-B10</td>
<td>ZAG29</td>
<td>HB10</td>
</tr>
<tr>
<td></td>
<td>OP-B10</td>
<td></td>
<td>HB15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17898B</td>
</tr>
<tr>
<td>Drought tolerant, Nematode and phylloxera</td>
<td>OP-B02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spicy flavour, crisp berries and late season</td>
<td>ZAG7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cultivar</td>
<td>ZAG7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZAG67</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ZAG25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nematode and phylloxera resistance</td>
<td>OP-B02</td>
<td>ZAG93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OP-B07</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. (1): The morphology of clusters (berries) of the six grape cultivars.
Fig. (2 a-i): DNA polymorphism using 9 primers for RAPD-PCR technique with the 10 grape genotypes; lanes 1 to 5 represent cultivars Banaty, Bezelanza, Flame, Early-superior and Crimson, respectively, Lanes 6 to 10 represent rootstocks, Harmony, SO4, Rogiri, Poulson and Freedom, respectively and M = DNA size standard.
Fig. (3 a-g): DNA polymorphism using 7 primers for SSRs-PCR technique with the 10 grape genotypes; lanes 1 to 5 represent cultivars Banaty, Bezelanza, Flame, Early-superior and Crimson, respectively, Lanes 6 to 10 represent rootstocks, Harmony, SO4, Rogiri, Poulson and Freedom, respectively and M = DNA size standard.
Fig. (4 a-d): DNA polymorphism using 4 primers for ISSRs-PCR technique with the 10 grape genotypes; lanes 1 to 5 represent cultivars Banaty, Bezelanza, Flame, Early-superior and Crimson, respectively, Lanes 6 to 10 represent rootstocks, Harmony, SO4, Rogiri, Poulson and Freedom, respectively and M = DNA size standard.

Fig. (5): Dendrogram for the genetic distances among the ten grape genotypes based on similarity indices data of RAPD analysis.
Fig. (6): Dendrogram for the genetic distances among the 11 grape genotypes based on similarity indices data of SSRs analysis.

Fig. (7): Dendrogram for the genetic distances between the ten grape genotypes based on similarity indices data of ISSRs analysis.

Fig. (8): Dendrogram for the genetic distances between the ten grape genotypes based on RAPD and ISSRs analysis.